

76

Day 3
Inheritance and Polymorphism:

Sameness and Differences

Inheritance

Inheritance makes it possible to build new classes from existing classes thus facilitating the reuse
of methods and data from one class in another. Moreover, inheritance allows data of one type to
be treated as data of a more general type.

 Example:

public class Cat
{
 protected int weight; // notice the keyword "protected"

 public Cat()
 {
 weight = 10;
 }
 public Cat(int weight)
 {
 this.weight = weight;
 }
 public void setWeight(int w)
 {
 weight = w;
 }
 public int getWeight()
 {
 return weight;
 }
 public void eat()
 {
 System.out.println("Slurp, slurp");
 }
 public int mealsPerDay()
 {
 return 2 + weight/50;
 }
}

// here is the inheritance part!

 public class Leopard extends Cat // "extends" indicates inheritance
{
 protected int numSpots;
 public Leopard()
 {
 weight = 100;
 numSpots =0; // a poor excuse for a leopard!!
 }

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

77

 public Leopard(int weight, int numSpots)
 {
 super(weight); // a call to the one argument constructor of Animal
 this.numSpots = numSpots;
 }
 public void setNumSpots(int n)
 {
 numSpots = n;
 }
 public int getNumSpots()
 {
 return numSpots;
 }
 public void eat() //overriding the eat method of Animal
 {
 System.out.println("CRUNCH...CHOMP...CRUNCH...SLURP");
 }
 public int mealsPerDay() //overriding the method of Animal
 {
 return super.mealsPerDay() * 2; // note call to parent method
 }
 public void roar() //a non-inherited method
 {
 System.out.println("GRRRRRRRRRRRRRRRRRRRR");
 }

}

The two classes, Cat and Leopard are related through inheritance.

• Use of the keyword extends signifies an inheritance relationship: Leopard extends Cat,
Leopard inherits from Cat.

• Cat is called the base class, super class, or parent class.

• Leopard is a derived class, sub class or child class.

• The Leopard class inherits all data and methods of the parent base class. However,
the Leopard class can also override any inherited methods and provide its own
implementation. Further, the Leopard class may include new methods and variables
that are not part of the base class.

• Constructors are not inherited.

• The derived class can call the constructor of the parent class with the keyword super
(super() or super(x)). If a derived class calls a super class constructor then this call
must be made before any other code is executed in the constructor of the derived class.
If an explicit super() call is not made, the default constructor of the parent is automatically
invoked. If a superclass defines constructors but not a default constructor, the subclass
cannot use the default constructor of the super class because none exists. It is a good
practice to define a default constructor whenever you define any constructor.

• The access modifier protected is used in the parent. A protected variable or method in a

public class MyClass can be accessed by any subclass of MyClass.

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

78

To prevent a class from being extended, use the modifier final. A final class cannot be a parent class:
Example: public final class MyClass
The class MyClass cannot be extended and is the parent of no other classes.

A Leopard is-a Cat

Inheritance allows the creation of a more specialized class from a parent class. The derived
class extends the attributes and/or functionality of the base class. A derived class has everything
that the base class has, and more.

The relationship between the base class and a derived class is often called an is-a relationship
because every derived class is a (kind of) superclass. For example, A Leopard is a Cat in the
sense that a Leopard can do everything that a Cat can do. A Leopard has all the attributes and
functionality of a Cat (and more). When deciding whether or not to extend a class, you should
determine whether or not an is-a relationship exists. If not, inheritance is probably not appropriate.

A Leopard is-a Cat and, as such, a Leopard object may be considered a Cat object.
For example, the following assignments are valid:

 Cat cat = new Leopard(200, 300);
or
 Cat cat;

 Leopard leopard = new Leopard(200, 300);
 cat = leopard;

This is called upcasting: a base-type reference may point to an object of a derived type. Thus any
type derived from class Cat (e.g., a Leopard) may be considered to be of type Cat. More specifically,

objects of a derived type may be considered objects of the base type.

This relationship between the base class and its derived classes is the cornerstone of inheritance.
As mentioned at the start of this chapter: inheritance allows data of one type to be treated as
data of a more general type. Yes, it is dandy that you can add new attributes and methods to the
Cat class but it is even dandier that an object of type Leopard can be considered of type Cat.
With a few more tools, you will see just how powerful this concept really is. You will see that a
single sorting or searching method can work with many different types. Because objects of a
derived type can be considered objects of a base type, one method, one piece of code, can
handle objects of many different types.

Everything Inherits: the Object Class

The package java.lang contains a class Object, which might be considered the mother of all classes.

Every class in Java is a subclass of Object. Every class is derived from Object. Every class
extends Object. Math, String, and StringBuffer all extend Object. Cat and Leopard also extend
Object. Cat is-a Object; Leopard is-a Object. There is no escape.

Being a descendent of Object does come with familial privileges:

• Every class inherits the operator, instanceof.

• Every class inherits the methods of Object:
public boolean equals(Object object)
public String toString()

Every class can be considered of type Object, i.e., every class can be upcast to Object.

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

79

Inheriting from Object

Casting and the instanceof operator:

Java permits type casting among primitive types. For example, the following implicit cast that
results in no loss of accuracy is acceptable:

int x = 5;
double y;
y = x; // In this case, y will have the value 5.0.

On the other hand, the following cast (which is allowed in C++) is illegal in Java:

double x = 3.75;
int y;
y = x;

In C++, y would happily accept the integer value 3 but Java will not tolerate any loss of accuracy
unless you force the issue with an explicit type cast:

double x = 3.37;
int y;
y = (int)x;

Similar rules hold for objects.

Now, consider the following inheritance hierarchy:

As we’ve already mentioned, upcasting is legal:

Person spongeBob = new AnimatedTVStar();
TVStar homerSimpson = new AnimatedTVStar();

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

80

In the first statement, spongeBob is a Person reference. The assignment

spongeBob = new AnimatedTVStar;

is legal because every Animated TVStar is-a Person. The same logic holds true for
the second statement.

On the other hand, the following code will cause an error.

Person seinfeld = new Person();
TVStar tvStar = seinfeld;

Every Person is not a TV star and you cannot arbitrarily assign an instance of Person to
a TVStar reference.

However, under certain conditions, an explicit downcast is permissible:

1. Person seinfeld = new TVStar();
2. TVStar x = (TVStar)seinfeld;
3. x.numEmmys();

Line1:

seinfeld is a Person reference. Every TVStar is-a person. The assignment is legal.
Line 2:

x is a TVStar reference. seinfeld is a Person reference which points to a TVStar. The
assignment is legal with an explicit downcast. As a Person reference, seinfeld is
unaware of its TVStar status unless explicitly cast to a TVStar.

Line 3:
 x is a TVStar reference. numEmmys() is a TVStar method. There is no problem here.

Here is another illustration. Consider the following code fragment:

Person people[] = new Person[3];
people[0] = new MovieStar();
people[1] = new TVStar();
people[2] = new AnimatedTVStar();

Each of these assignments is legal because a MovieStar is-a Person (really?), a TVStar is-a
Person (well, almost), and an AnimatedTVStar is-a Person (kindda).

On the other hand, the method calls

people[0].getOscars() and
people[2].isHuman()

will each cause an error.

The references people[0] and people[2] know nothing of the methods getOscars() and
isHuman(). people[0] and people[2] reference Person objects.

Nonetheless, a downcast will produce the desired results:

 ((MovieStar)people[0]).getOscars()
 ((AnimatedTVStar)people[2]).ishuman()

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

81

Java will not allow the cast

 ((MovieStar).people[2]).getOscars()

since people[2] was originally assigned anAmimatedTVStar object which is not even in the same
hierarchy as MovieStar.

The use of the instanceof operator helps to avoid casting errors.

The instanceof operator returns true if an object is an instance of a certain class or a subclass
derived from that class:

 if (people[2] instanceof AnimatedTVStar)
 boolean human = ((AnimatedTVStar)people[2]).isHuman();
 else.......

Example:
Notice the use of the instanceof operator in class InstanceofDemo below.

public class RectangleClass
{
 private int length;
 private int width;

 public RectangleClass(int x, int y)
 {
 length = x;
 width = y;
 }

 public int area()
 {
 return length*width;
 }
}

public class CubeClass
{
 private int length;
 private int width;
 private int height;

 public CubeClass(int x, int y, int z)
 {
 length = x;
 width = y;
 height = z;
 }

 public int volume()
 {
 return length*width*height;
 }
}

public class InstanceofDemo
{
 public static void main(String args[])
 {
 CubeClass x = new CubeClass(3,4,5);
 RectangleClass y = new RectangleClass(3,4);

 junk(x);
 junk (y);
 }

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

82

 public static void junk(Object z) // notice the type Object
 {
 if (z instanceof RectangleClass)
 {
 RectangleClass x;
 x = (RectangleClass) z; // notice the cast here
 System.out.println(x.area());

 }
 else if(z instanceof CubeClass)
 {
 CubeClass x = (CubeClass) z; // again notice the cast (CubeClass)
 System.out.println(x.volume());
 }
 else
 System.out.println("Unknown object");

 }
}

The parameter of method junk() is of type Object. Since every object (lower case “o”) is-a Object
(upper case “O”), any object may be passed to method junk(). junk() uses the instanceof
operator to determine whether or not z is a RectangleClass or a CubeClass.

boolean equals(Object object):

The equals() method tests whether or not two objects are equal.
In the Object class equals() is implemented as:

 boolean equals(Object x)
 {
 return (this == x);
 }

So equals() is equivalent to the relational operator == for the Object class.

Remember, variables x and y are references. So, x==y returns true only if x and y both point to
the exact same object. If x and y point to distinct objects with identical data, x == y returns false,
as will equals().

Consider the following code fragment:

 String s = "doc"; // “doc” is a string literal and an object
 String t = new String("doc");
 System.out.println(s == "doc");
 System.out.println(t == "doc");

What is the output?
You would hope that the output is
 true
 true

but, in fact, it is
 true
 false

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

83

Remember that all strings in Java are genuine objects.
The statement:

 String s = “doc”;

first creates an object for the string literal “doc” and then assigns the address of that object to
reference s. The string literal “doc” is an instance of the String class.

The next statement

 String t = new String(“doc”);

creates a second String object and assigns its address to reference t. Thus, s and t are
referencing two different String objects, the string literal “doc” and the second String object
created by new. Hence, s==”doc” is true but t==”doc” is false.

Fortunately, the String class overrides the equals method inherited from Object. The overridden
version of equals() compares characters not references.

Using the equals() method of the String class instead of ==, the above fragment is rewritten:

String s = "doc";
 String t = new String("doc");
 System.out.println(s.equals("doc"));
 System.out.println(t.equals("doc"));

The output is
 true
 true
as it should be.

Good Habit I: To determine whether or not two objects of a class are equal based on the data of
the objects, a class should override the equals() method that is inherited from Object.

Assume that two Cube objects are equal if they have the same volume. In the following example,
class Cube overrides the equals() method. The new equals() method is based on volume.

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

84

public class Cube
{
 private int length;
 private int width;
 private int height;

 public Cube(int x, int y, int z)
 {
 length = x;
 width = y;
 height = z;
 }

 public int volume()
 {
 return length*width*height;
 }

 public boolean equals(Object x)
 { // notice the downcast, an Object does not have length, width and height
 //but a Cube does.
 return length*width* height == ((Cube)x).length* ((Cube)x).width* ((Cube)x).height;

 }

 public static void main(String args[])
 {
 Cube a = new Cube(2,3,4);
 Cube b = new Cube(2,3,4);
 System.out.println(a.equals(b)); // uses overridden equals
 System.out.println(a == b); // compares references
 }
}

The output is
 true
 false

You might be wondering:

Why not just write an equals method for Cube?
boolean equals(Cube x)

No downcast would be necessary. It is simpler.

Yes, such a version of equals would work. Yes, it appears simpler. However, you will shortly see
the real benefit in overriding the equals method inherited from Object. Just wait a bit more.

String toString() : returns a string representation of the calling object.

Like equals(), every object inherits toString() from Object. However, the inherited version of
toString() is not particularly useful. As inherited from Object, toString() returns the class name of
the calling object along with a system number.

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

85

public static void main(String args[])
{
 Cube r = new Cube(2,3,4);
 System.out.println(r.toString());
}

The output of this is:

Cube@310d42

Good Habit II: Overriding toString() makes good sense. A class should override the toString()
method by including all the relevant information about an object. Often such information is helpful
when debugging.

Example:
For class Cube, you might override toString() as follows:

 public String toString()
{
 String s = "length = "+length+" width = "+width+" height = "+height;
 return s;
}

Now, when toString() is invoked by a Cube object the result is a bit more meaningful than
“Cube@310d42.”

public static void main(String args[])
{
 Cube r = new Cube(2,3,4);
 System.out.println(r.toString());
}

Output :

length = 2 width = 3 height = 4

One final note:
The toString() method is automatically called when an object is passed to println. Consequently
 System.out.println(r.toString()); and
 System.out.println(r));
produce the same output

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

86

Inheritance via Abstract classes

Consider the following three classes that encapsulate three geometrical shapes. Notice that each
class implements toString() and equals(), both inherited from Object.

public class Square
{
 private int rows;
 private char character;

//constructors
 public Square()
 {

 rows = 0;
 char character = ' ';
 }

public Square(int x, char ch)
{
 base =height = x;
 character = ch;
}

public int getRows()
{
 return rows;
}

public char getCharacter()
{
 return character;
}

public void setRows(int y)
{
 rows = y;
}

public void setCharacter(char ch)
{
 character = ch;
}

public boolean equals(Object x)
{
 return numChars() ==
 ((Square)x).numChars();
}

public String toString()
{
 String s = “rows = “ +rows;
 return s;
}

public int numChars()
{
 return rows * rows;
}

public class RightTriangle
{
 private int rows;
 private char character;

public RightTriangle()
 {

 rows = 0;
 char character = ' ';
 }

public RightTriangle(int x, char ch)
 {
 rows = x;
 character = ch;
}

public int getRows ()
{
 return rows;
}

public char getCharacter()
{
 return character;
}

public void setRows(int y)
{
 rows = y;
}

public void setCharacter(char ch)
{
 character = ch;
}

public boolean equals(Object x)
{
 return numChars() ==
 ((RightTriangle)x).numChars();
}

public String toString()
{
 String s = "rows = " +rows;
 return s;
}

public int numChars()
{
 return ((rows)*(rows+1))/2;
}

public class Isosceles
{
 private int rows;
 private char character;

public Isosceles ()
 {

 rows = 0;
 char character = ' ';
 }

public Isosceles (int x, char ch)
{
 rows = x;
 character = ch;
}

public int getRows()
{
 return rows;
}

public char getCharacter()
{
 return character;
}

public void setRows(int y)
{
 rows = y;
}

public void setCharacter(char ch)
{
 character = ch;
}

public boolean equals(Object x)
{
 return numChars() ==
 ((Isosceles)x).numChars();
}

public String toString()
{
 String s = "rows = " +rows;
 return s;
}

public int numChars()
{
 return ((rows)*(rows+1))/2;
}

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

87

public void draw(int x, int y)
{
 for (int i = 1; i <= y; i++)
 System.out.println();
 for (int len = 1; len<= rows; len++)
 {
 for (int i = 1; i <= x; i++)
 System.out.print(' ');
 for (int j = 1; j <= rows; j++)
 System.out.print(character);
 System.out.println();
 }
}
}

public void draw(int x, int y)
{
 for (int i = 1; i <= y; i++)
 System.out.println();
 for (int len = 1; len<= rows;
len++)
 {
 for (int i = 1; i <= x; i++)
 System.out.print(' ');
 for (int j = 1; j <= len; j++)
 System.out.print(character);

 System.out.println();
 }
}
}

public void draw(int x, int y)
{
 for (int i = 1; i <= y; i++)
 System.out.println();
 for(int j=0; j<rows; j++)
 {
 for(int i=0; i < rows-j+x; i++)
 System.out.print(" ");
 for(int i =0; i<j+1; i++)
 System.out.print(character
 +" ");
 System.out.println();
 }
 }
}

Note: The numChars() method returns the number of characters used to draw a figure.
For example if rows = 5, the three figures are drawn as:

Square

*
**

RightTriangle

 *
 * *
 * * *
 * * * *
 * * * * *
 Isosceles

using 25, 15, and 15 characters respectively. Each triangle, though drawn differently, has
1+2+3+4+5 characters.

There is much the same about the three classes. In fact, they are more similar than different.
If several classes have data and methods in common, you may be able to factor out the
commonality of the classes into one super class.

Example

public class Shape // has methods common to Square, RightTriangle, and Isosceles
{
 protected int rows;
 protected char character;

 public Shape()
 {
 rows = 0;
 char character = ' ';
 }

 public Shape(int x, char ch)
 {
 rows = x;
 character = ch;
 }

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

88

 public int getRows()
 {
 return rows;
 }

 public char getCharacter()
 {
 return character;
 }

 public void setRows(int y)
 {
 rows = y;
 }

 public void setCharacter(char ch)
 {
 character = ch;
 }

 public boolean equals(Object x)
 {
 return numChars() ==
 ((Shape)x).numChars();
 }

 public String toString()
 {
 String s = “rows = “ +rows;
 return s;
 }

 public int numChars()
 {
 System.out.println("Not applicable");
 return -1;
 }

 public void draw(int x, int y)
 {
 System.out.println("Draw method not applicable.");
 }

}

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

89

Square, RightTriangle and Isosceles can now be redefined to extend Shape. Shape is the parent.
Shape is the base class.

class Square extends Shape
{
public Square()
{
 super();
}

public Square(int x, char ch)
{
 super(x,ch);

}

public void draw(int x, int y)
{

 for (int i = 1; i <= y; i++)
 System.out.println();
 for (int len = 1; len<= rows;
len++)
 {
 for (int i = 1; i <= x; i++)
 System.out.print(' ');
 for (int j = 1; j <= rows; j++)
 System.out.print(character);
 System.out.println();
 }
}
public boolean equals(Object x)
{
 return numChars() ==
 ((Square)x).numChars();
}

public int numChars()
{
 return rows * rows;
}
}

class RightTriangle extends Shape
{
public RightTriangle()
{
 super();
}

public RightTriangle(int x, char ch)
{
 super(x,ch);

}

public void draw(int x, int y)
{

 for (int i = 1; i <= y; i++)
 System.out.println();
 for (int len = 1; len<= rows;
len++)
 {
 for (int i = 1; i <= x; i++)
 System.out.print(' ');
 for (int j = 1; j <= len; j++)
 System.out.print(character);
 System.out.println();
 }
}

public boolean equals(Object x)
{
 return numChars() ==
 ((RightTriangle)x).numChars();
}

public int numChars()
{
 return ((rows)*(rows+1))/2;
}
}

class Isosceles extends Shape
{
public Isosceles ()
{
 super();
}

public Isosceles (int x, char ch)
{
 super(x,ch);

}

public void draw(int x, int y)
{
 for (int i = 1; i <= y; i++)
 System.out.println();
 for(int j=0; j<rows; j++)
 {
 for(int i=0; i < rows-j+x; i++)
 System.out.print(" ");
 for(int i =0; i<j+1; i++)
 System.out.print(character
 +" ");
 System.out.println();
 }
 }

public boolean equals(Object x)
{
 return numChars() ==
 ((Isosceles)x).numChars();
}

public int numChars()
{
 return ((rows)*(rows+1))/2;
}
}

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

90

Of course, the base class Shape is not a class that one would ordinarily instantiate. What does a
shape object look like? Yes, a Shape object can be created, but such an object probably would
not make much sense. Further a call to the draw() or numChars() methods of Shape would do no
more than produce a message. In fact, you might say that Shape is a somewhat theoretical,
intangible, abstract, and even ethereal class.

In Java, the notion of an abstract class is very precise:

An abstract class is a class that cannot be instantiated.

To be of any use, an abstract class must be extended. The following example re-defines Shape
as an abstract class.

Example
public abstract class Shape // notice the keyword abstract
{
 protected int rows;
 protected char character;

 public Shape()
 {
 rows = 0;
 char character = ' ';
 }

 public Shape(int x, char ch)
 {
 rows = x;
 character = ch;
 }

 public int getRows()
 {
 return rows;
 }

 public char getCharacter()
 {
 return character;
 }

 public void setRows(int y)
 {
 rows = y;
 }

 public void setCharacter(char ch)
 {
 character = ch;
 }

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

91

 public String toString()
 {
 String s = “rows = “ +rows;
 return s;
 }
 public abstract boolean equals(Object x);
 public abstract int numChars();
 public abstract void draw(int x, int y);
}

Shape contains all the variables and methods common to the Square, RightTriangle and
Isosceles classes. Because Shape is abstract, however, Shape cannot be instantiated, i.e.,
there can be no Shape objects. Indeed, methods numChars() and draw() and equals() have
no implementations whatsoever.

In general, an abstract class has the following properties:

• The word abstract denotes an abstract class.

• An abstract class is a template that can be inherited by subclasses.

• An abstract class cannot be instantiated. You cannot create an object of an abstract class.

• An abstract class may contain abstract methods. If a class is declared abstract and does
not have any abstract methods, the class cannot be instantiated.

• If an abstract class contains abstract methods, those methods must be overridden in the
subclass. If this is not done, then the subclass will also have to be declared abstract.

• All abstract classes and methods are public.

Although Shape cannot be instantiated, Shape can still serve as a base class with
the following proviso:

Any class that extends shape must implement the draw(), equals(), and numChars()
methods; otherwise the derived class must also be abstract.

That’s the contract – any class that extends Shape must implement these methods (or else
remain in abstract-land). Thus, any non-abstract sub-class of Shape is guaranteed to have a
draw() , equals() and numChars() method – the contract must be fulfilled.
Furthermore, Square, RightTriangle, and Isosceles can all be upcast to Shape.

Interfaces

We have used the term interface in conjunction with everything from the buttons on a TV to the
public methods provided by a class. In Java, the term interface has a very specific meaning:

An interface is a named collection of static constants and abstract methods. An interface
specifies certain actions or behavior of a class but not implementations.

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

92

Example:

The following interface, ThreeDShape, consists of one static constant and three abstract
methods.

public interface ThreeDShape
{
 public static final double pi = 3.14159;
 public abstract double area();
 public abstract double volume();
}

(The modifier abstract is optional, since by definition of an interface, all methods are abstract.)

Notice that unlike a class:

• All methods are public.
• All methods are abstract -- no implementations at all.
• There are no instance variables.

Like an abstract class, an interface cannot be instantiated. In fact, a class cannot even extend an
interface. Instead, a class implements an interface.

Example:
The following three classes each implement the ThreeDShape interface.

public class Cube implements
 ThreeDShape
{
 private double length, width,
 height;
 public Cube()
 {
 length = 1;
 width = 1;
 height = 1;

 }
 public Cube(double l, double w,
 double h)
 {
 length = l;
 width = w;
 height = h;
 }
 public double area()
 {
 return 2*length*width+
 2*length*height+
 2*width*height;
 }
 public double volume()
 {
 return length*width*height;
 }

}

public class Sphere implements
ThreeDShape
{
 private double radius;

 public Sphere()
 {
 radius = 1;

 }

 public Sphere(double r)
 {
 radius = r;
 }

public double area()
 {
 return
 4*pi*radius*radius;
 }

public double volume()
 {
 return
 (4.0/3.0)*
 pi*radius*radius*radius;
 }
}

public class Cylinder implements
ThreeDShape
{
 private double radius,height;

 public Cylinder()
 {
 radius = 1;
 height = 1;

 }

 public Cylinder(double r,
 double h)
 {
 radius = r;
 height = h;
 }

 public double area()
 {
 return 2*pi*radius*height+
 2*pi*radius*radius;
 }

public double volume()
 {
 return
 pi*radius*radius*height;
 }
}

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

93

An interface is a contract. An interface specifies a set of responsibilities, actions, or behaviors for
any class that implements it. Any class that implements an interface must implement all the
methods of the interface. Because Cube, Sphere and Cylinder all implement ThreeDShape, all
three classes, by contract, must implement the volume() and area() methods as declared in the
interface. Moreover, since Cube implements ThreeDShape, any client of Cube is guaranteed
area() and volume() methods.

But isn’t this idea of a contract true of an abstract class? Doesn’t every (non abstract) class that
extends an abstract class have an obligation to implement the abstract methods? Why confuse
things with interfaces? Why not simply define an abstract class where every method is abstract?
Wouldn’t such a class accomplish the same thing as an interface? The answer to the last
question is yes and no.

Some object oriented languages like C++ allow multiple inheritance. A subclass can inherit from
multiple super classes. The unrestricted use of multiple inheritance is a controversial feature with
many complexities and pitfalls. Many programmers do not use the feature on principle.
Nonetheless, there are many advantages and conveniences of multiple inheritance. Java avoids
such complexities, but does not throw the baby out with the bathwater. Java does not allow
multiple inheritance - a subclass cannot inherit from two different base classes. On the other
hand, a class may implement any number of interfaces. Thus, a class may extend one class as
well as implement an interface or two. In fact, a derived class can be upcast to any one of its
interfaces. Therefore, one difference between interfaces and abstract classes, is that interfaces
allows the Java Programmer some of the flexibility of multiple inheritance, without the
associated pitfalls.

Interface Example 1:

In a previous example, we designed a hierarchy of classes with methods used for drawing various
squares and triangles. The following version of Shape does not contain numChar() and draw().

public abstract class Shape // cannot be instantiated
{
 protected int rows;
 protected char character;

 public Shape()
 {
 rows = 0;
 char character = ' ';
 }

 public Shape(int x, char ch)
 {
 rows = x;
 character = ch;
 }

 public int getRows()
 {
 return rows;
 }

public char getCharacter()

 {
 return character;
 }

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

94

 public void setRows(int y)
 {
 rows = y;
 }

public void setCharacter(char ch)
 {
 character = ch;
 }

 abstract public boolean equals(Object x);

public String toString()
 {
 String s = “rows = “ +rows;
 return s;
 }

}

Below is an interface, Drawable, specifying a contract for any implementations.

public interface Drawable
{
 public int numChars();
 public void draw(int x, int y);
}

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

95

Finally, we have the three concrete classes: Square, RightTriangle, and Isosceles. Each extends
Shape and implements Drawable. Each can be considered of type Shape as well as type Drawable.

class Square extends Shape
 implements Drawable
{
public Square()
{
 super();
}

public Square(int x, char ch)
{
 super(x,ch);
}
public boolean equals(Object x)
{
 return numChars() ==
((Square)x).numChars();
}

public void draw(int x, int y)
{
 for (int i = 1; i <= y; i++)
 System.out.println();
 for (int len = 1; len<= rows;
len++)
 {
 for (int i = 1; i <= x; i++)
 System.out.print(' ');
 for (int j = 1; j <= rows; j++)
 System.out.print(character);
 System.out.println();
 }
}

public int numChars()
{
 return rows * rows;
}
}

class RightTriangle extends Shape
 implements Drawable
{
public RightTriangle()
{
 super();
}

public RightTriangle(int x, char ch)
{
 super(x,ch);
}
public boolean equals(Object x)
{
 return numChars() ==
((RightTriangle)x).numChars();
}

public void draw(int x, int y)
{
 for (int i = 1; i <= y; i++)
 System.out.println();
 for (int len = 1; len<= rows;
len++)
 {
 for (int i = 1; i <= x; i++)
 System.out.print(' ');
 for (int j = 1; j <= len; j++)
 System.out.print(character);
 System.out.println();
 }
}

public int numChars()
{
 return ((rows)*(rows+1))/2;
}
}

class Isosceles extends Shape
 implements Drawable
{
public Isosceles ()
{
 super();
}

public Isosceles (int x, char ch)
{
 super(x,ch);
}
public boolean equals(Object x)
{
 return numChars() ==
((Isosceles)x).numChars();
}

public void draw(int x, int y)
{
 for (int i = 1; i <= y; i++)
 System.out.println();
 for(int j=0; j<rows; j++)
 {
 for(int i=0; i < rows-j+x; i++)
 System.out.print(" ");
 for(int i =0; i<j+1; i++)
 System.out.print(character
 +" ");
 System.out.println();
 }
 }

public int numChars()
{
 return ((rows)*(rows+1))/2;
}
}

The Comparable Interface

So far, class Cube has overridden both the equals() and toString() methods inherited from Object.
The equals() method allows us to determine whether or not two Cubes are equal. Now, by
implementing the Comparable interface, any two Cubes can be compared.

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

96

The Comparable interface is an interface with just one (abstract) method, compareTo():
public interface Comparable
{
 int compareTo(Object o);
}

Notice that compareTo() returns an integer. A class which implements the Comparable interface
usually implements compareTo so that
 a.CompareTo(b) = –1 if a is less than b
 a.CompareTo(b) = 0 if a equals b
 a.CompareTo(b) = 1 if a is greater than b

Interface Example II:

public class Cube implements Comparable
{
 private int length;
 private int width;
 private int height;

 public Cube(int x, int y, int z)
 {
 length = x;
 width = y;
 height = z;
 }

 public int volume()
 {
 return length*width*height;
 }

 public boolean equals(Cube x)
 {
 return length*width*height == x.length*x.width*x.height;
 }

 public String toString()
 {
 String s = "length = "+length+" width = "+width+" height = "+height;
 return s;
 }

 public int compareTo(Object o) // compare based on volume
 {

// because the parameter o is of type Object a downcast to Cube is essential
if (volume() < ((Cube)o).volume())

 return -1;
 else if (volume() > ((Cube)o).volume())
 return 1;
 else
 return 0;
 }
}

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

97

The Flexibility of Interfaces

Implementation of the Comparable interface highlights another more subtle distinction between
interfaces and abstract classes. A Cube class can implement Comparable - so can a Car class, a
Person class, or a Vampire class. However, the classes that implement Comparable are not
necessarily related. On the other hand, because an abstract class contains some
implementations, derived classes all share these implementations and are logically coupled.

We return to the abstract Shape class. In the world of Shape objects, comparisons are based on
numChars. So, although it may be illogical to compare apples and oranges, comparing triangles
and squares makes perfect sense.

Example:
 public abstract class Shape implements Comparable
 {
 protected int rows;
 protected char character;

 public Shape()
 {
 rows = 0;
 char character = ' ';
 }

 public Shape(int x, char ch)
 {
 rows = x;
 character = ch;
 }
 public int getRows()
 {
 return rows;
 }
 public char getCharacter()
 {
 return character;
 }
 public void setRowst(int y)
 {
 rows = y;
 }
 public void setCharacter(char ch)
 {
 character = ch;
 }
 public abstract int numChars();
 public abstract void draw(int x, int y);
 public boolean equals(Object x)
 {
 return numChars() == ((Shape)x).numChars();
 }

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

98

 public String toString()
 {
 String s = “rows = “ +rows;
 return s;
 }

 public int compareTo(Object o)
 {
 if (numChars() < ((Shape)o).numChars())
 return -1;
 else if (numChars() > ((Shape)o).numChars())
 return 1;
 else
 return 0;
 }
}
The next example demonstrates the power of inheritance with a general routine capable of
sorting an array of objects of any class C, provided C implements the Comparable interface.

Example:

 public class Sort // selection sort
{
 public static void sort(Comparable[] x) // any type can be upcast to Object
 {

 Comparable max;
 int maxIndex;

 for (int i=x.length-1; i>=1; i--)
 {
 // Find the maximum in the x[0..i]
 max = x[i];
 maxIndex = i;

 for (int j=i-1; j>=0; j--)
 {
 //Since max is of type Object, max must be downcast
 if (max.compareTo(x[j]) < 0)
 {
 max = x[j];
 maxIndex = j;
 }

 }
 if (maxIndex != i)
 {
 x[maxIndex] = x[i];
 x[i] = max;
 }
 }
 }

}

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

99

The following fragment illustrates the generic sort method:

 int length, width, height;
 Cube x[] = new Cube[10];
 System.out.println(“enter the length, width, and height for 10 cubes”);
 for (int i = 0; i <10; i++)
 {
 length = MyInput.readInt();
 width = MyInput.readInt();
 height = MyInput.readInt();
 x[i] = new Cube(length,width,height);
 }
 Sort.sort(x);
 System.out.println(“The cubes in order of magnitude are: “);
 for(int i = 0; i < 10; i++)
 System.out.println(x[i].volume());

If inheritance merely provided new functionality for existing classes, it would still be a useful
technique. However, the real muscle lies in the fact that a derived type object can be considered
an object of a base type, i.e., the ability to upcast.

Composition and the has-a relationship

Inheritance is characterized by an is-a relationship:

a Square is-a Shape,
a RightTriangle is-a Shape,
a MovieStar is-a Person,
a Dog is-an Animal,
a Terrier is-a Dog.

Often times, however, classes are related but not via an is-a relationship, and upcasting is not of
any apparent value. Consider for example the two (partial) classes Person and BankAccount:

public class Person
{
 private String name:
 private String address;
 //etc.
}

public Class BankAccount
{
 private String accountNumber;
 private double balance;

 public double balance()
 //etc.
}

Suppose that every Person possesses a BankAccount. Certainly it is possible to derive
BankAccount from Person or Person from BankAccount, but the relationship is not natural. A
person is-not a BankAccount and a BankAccount is-not a Person. Also, there is no apparent or
logical reason to consider a Person a type of BankAccount or vice versa. Inheritance is not a
good fit.

We have already seen that one object may contain objects of another class. Indeed, string object
have been included in many of our previous classes. Thus, a BankAccount object might be an
instance variable of the Person class. We might say that a Person has-a BankAccount.

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

100

public Person
{
 private String name:
 private String address;
 private BankAccount account;
 // etc.
}

The relationship between the Person and the BankAccount classes is an example of composition
-- a relationship where one object is composed of other objects. A class in which some instance
variables are objects is often called an aggregate class. As an is-a relationship indicates
inheritance, a has-a relationship signals composition. Inheritance implies an extension of
functionality and the ability to upcast; composition indicates ownership. The two should not be
confused.

Polymorphism

Polymorphism literally means “many shapes” or “many forms.” Method overloading is one form
of polymorphism: several methods with the same name may behave differently.

 Square Rectangle Cube
int area(int x)
{

return x*x;
}

int area(int x, int y)
{
 return x*y;
}

int area(int x, int y, int z)
{
 return 2*x*y + 2*x*z + 2*y*z;
}

The area method has many forms, well at least three.

Inheritance provides another form of polymorphism: an object of a derived type can also be
considered an object of a base type:
 Person joe;

joe = new MovieStar();
 joe = new TVStar();
 joe = new AnimatedTVStar();

The above code emphasizes that a MovieStar is-a Person, a TVStar is-a Person, and an
AnimatedTVStar is-a Person. That is, a Movie Star object is upcast to a Person type as is a
TVStar and an AnimatedTVStar. Since joe is of type person, the reference joe is polymorphic,
i.e., joe has “many forms.” Upcasting is a form of polymorphism.

While inheritance exploits the sameness of types in a hierarchy, a third form of polymorphism,
provided via dynamic or late binding, emphasizes the behavioral differences among types in
the same hierarchy.

This third form of polymorphism is illustrated in the following example.

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

101

Example:

Consider the following test class that utilizes the Shape hierarchy:

public class TestDrawShape
{
 public static void drawShape(Shape s)
 {
 int xcoord, ycoord;
 System.out.print("x coordinate: ");
 xcoord = MyInput.readInt();
 System.out.print("y coordinate: ");
 ycoord = MyInput.readInt();

 s.draw(xcoord,ycoord);
 }

 public static void main(String args[])
 {
 Shape shape = null;
 int rows;

 int shapeNum; //id for each shape
 char ch;

 System.out.println("Enter 1: Square, 2: Right Triangle, 3 : Isosceles Triangle");
 shapeNum = MyInput.readInt();
 System.out.print("Rows: ");
 rows = MyInput.readInt();
 System.out.print("Character: ");
 ch = MyInput.readChar();

 switch (shapeNum)
 {
 case 1 : shape = new Square(rows,ch);
 break;
 case 2 : shape = new RightTriangle(rows,ch);
 break;
 case 3 : shape = new Isosceles(rows,ch);
 break;
 }

 System.out.println(shape);
 TestDrawShape.drawShape(shape);

 }
}

Method drawShape() takes a Shape parameter. However, because Square is-a Shape,
RightTriangle is-a Shape and Isosceles is-a Shape, the parameter s of the method
drawShape(Shape s) can refer to any type of Shape, i.e., upcasting is applicable.

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

102

 Method drawShape() calls draw():

 s.draw(xcoord,ycoord)

Which draw method is called? The choice of the draw method (there are three) is determined not
when the program is compiled but at runtime. At run time Java determines which form of the
draw method is applicable.

The Java Virtual Machine picks the method as determined by the type of the object
which was created by the new operator.

There is no way the compiler could determine which shape must be drawn. In the code, the
method call is simply s.draw(x,y) and s is of type Shape. Regardless of the particular type of
object passed to drawShape the method s.draw(x,y) works. The draw function is polymorphic i.e.
it has many forms.

Without polymorphism a sequence of if-else statements would be necessary to draw the
correct figure:

 if (s instanceof Square)
 ((Square)s).draw(xcoord, ycoord);
 else if (s instanceof RightTriangle)
 ((RightTriangle)s).draw(xcoord, ycoord);
 else if (s instanceof Isosceles)
 ((Isosceles)s).draw(xcoord, ycoord);

Postponing a choice until runtime is called late binding or dynamic binding.

In designing a programming language, there are many features in which a choice of binding time
must be made. For example, if type binding is early then the compiler will know that x==y is an
error if x is double and y is an integer. If type binding is late, then x and y can change types
dynamically during the running of the program, and we would never know whether x==y was an
error until we ran the program. Early versus late (or static versus dynamic) binding is a design
choice that affects the whole philosophy of a programming language. In general, dynamic or late
binding offers flexibility to the programmer, at the cost of efficiency and complexity.

Now, at the risk of gross simplification, let’s see how the draw function is chosen.
Notice that the variable shape is declared of type Shape:
 Shape shape

Shape is often called the apparent type of shape.

On the other hand, the real type of variable shape is the type of the object that was created by the
call to new. Thus the real type of Shape is either Square, RightTriangle, or Isosceles, depending
on user input.

Parameter s in method drawShape has apparent type Shape and real type of either Square,
RightTriangle or Isosceles. Let’s arbitrarily decide that the real type of s is RightTriangle.

When the method draw is invoked, Java begins with the real type (RightTriangle). If
RightTriangle has a draw method then that method is called. If no draw method is defined in
RightTriangle, then the parent of RightTriangle is searched, etc., all the way up the hierarchy.

 If instead of draw(), suppose that the getRows() method had been called
 s.getRows()

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

103

Again, Java starts searching the RightTriangle class. Since RightTriangle does not implement a
getRows() method, Java continues the search in the parent class (Shape) where such a method
does exist.

But wait! Polymorphism gets even better. Consider a subclass of RightTriangle, say
InvertedRightTriangle, which draws a triangle “up-side-down:”

**
*

InvertedRightTriangle necessarily overrides draw() and implements its own constructors:

public class InvertedRightTriangle extends RightTriangle
{
 public InvertedRightTriangle ()
 {
 super();
 }

 public InvertedRightTriangle (int x, char ch)
 {
 super(x,ch);
 }
 public void draw(int x, int y)
 {
 for (int i = 1; i <= y; i++)
 System.out.println();
 for (int len = rows; len>= 1; len--)
 {
 for (int i = 1; i <= x; i++)
 System.out.print(' ');

 for (int j = 1; j <= len; j++)
 System.out.print(character);

 System.out.println();
 }
 }
 }

The hierarchy has been easily extended, and amazingly, the only necessary change occurs in the
test program (below in bold). Just two lines!

public class TestDrawShape2
{
 public static void drawShape(Shape s)
 {
 int xcoord, ycoord;
 System.out.print("x coordinate: ");
 xcoord = MyInput.readInt();
 System.out.print("y coordinate: ");

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

104

 ycoord = MyInput.readInt();

 s.draw(xcoord,ycoord);
 }

 public static void main(String args[])
 {
 Shape shape = null;
 int rows,shapeNum;
 char ch;

 System.out.println("Enter 1 :Square, 2: RightTriangle, 3: Isosceles, 4 Inverted Triangle ");
 shapeNum = MyInput.readInt();
 System.out.print("Rows: ");
 rows = MyInput.readInt();
 System.out.print("Character: ");
 ch = MyInput.readChar();

 switch (shapeNum)
 {
 case 1 : shape = new Square(rows,ch);
 break;
 case 2 : shape = new RightTriangle(rows,ch);
 break;
 case 3 : shape = new Isosceles(rows,ch);
 break;
 case 4 : shape = new InvertedRightTriangle(rows,ch);
 break;

 }

 System.out.println(shape);
 TestDrawShape2.drawShape(shape);

 }
}

Nothing in the Shape hierarchy needed alteration. In fact the old classes (Square, RightTriangle,
Isosceles) do not even have to be recompiled.

Polymorphism Makes Programs Extensible.

Without polymorphism, the demo program would ramble on with a bunch of switch or if-else
statements. Adding a new class would mean changing existing classes. Moreover, everything
would need to be recompiled. We had to do none of this; we just had to write a new class and
voilà, it all works -- plug and play. Moreover, polymorphism facilitates code reuse. We can add
as many shapes as we’d like and no code in our current system will need to be changed.

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

105

Example:

Consider the following hierarchy:

public interface Dog
{
public void bark();
public void weight();
public void name();
}

public class Collie implements Dog
{
 public void bark()
 {
 System.out.println("Woof");
 }

 public void weight()
 {
 System.out.println("100 lbs");
 }

 public void name()
 {
 System.out.println("Lassie");
 }
}

public class Poodle implements Dog
{
 public void bark()
 {
 System.out.println("L’arf");
 }

 public void weight()
 {
 System.out.println("25 lbs");
 }

 public void name()
 {
 System.out.println("Pierre");
 }
}

public class Chihuahua implements Dog
{
 public void bark()
 {
 System.out.println("Squeak");
 }

 public void weight()
 {
 System.out.println("5 lbs");
 }

 public void name()
 {
 System.out.println("Brutus");
 }
}

Below is a public class with two methods. The first method greeting() takes one parameter of
type Dog which means the reference passed may refer to any subtype. The second method
allDogs() receives an array of type Dog.

public class Doggie
{
 public static void greeting(Dog d) // note d is Dog
 {

 System.out.println(); //blank line
 System.out.print("My name is ");
 d.name(); // which name()????????????????????
 System.out.print("I weigh ");
 d.weight(); //which weight??????????????????????
 d.bark(); //which bark()??????????????????????
 System.out.println();
 }
 public static void allDogs(Dog[] dogList) // note type Dog
 {
 for (int i = 0; i < dogList.length; i++)
 greeting(dogList[i]);
 }
}

Below is a simple main() method which utilizes class Doggie:

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

106

 public static void main(String args[])
 {
 int dogNum, count;
 Dog[] dogList;

 System.out.println("How many dogs?");
 count = MyInput.readInt();
 dogList = new Dog[count];

 System.out.println("Enter 1,2,or 3 for each type of dog");
 for (int i = 0; i < count; i++)
 {
 System.out.print("? ");
 dogNum = MyInput.readInt();
 switch (dogNum)
 {
 case 1 : dogList[i] = new Collie();break;
 case 2 : dogList[i] = new Poodle();break;
 case 3 : dogList[i] = new Chihuahua ();break;
 }
 }
 Doggie.allDogs(dogList);
 }

First run of the program:

How many dogs?
3
Enter 1,2,or 3 for each type of dog
? 2
? 1
? 3

My name is Pierre
I weigh 25 lbs
L'arf

My name is Lassie
I weigh 100 lbs
Woof

My name is Brutus
I weigh 5 lbs
Squeak

Press any key to continue . . .

A second run of the program:

How many dogs?
2
Enter 1,2,or 3 for each type of dog
? 3
? 1

My name is Brutus
I weigh 5 lbs
Squeak

My name is Lassie
I weigh 100 lbs
Woof

Press any key to continue . . .

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

107

So what is happening?
The call Doggie.allDogs(dogList);

passes to allDogs the array dogList which is an array of Dog. Such an array can refer to objects
of any of the classes which implement Dog, i.e., dogList[i] can refer to a Collie, Poodle, or
Chihuahua object.

The choice of the various implementations of name(), bark() and weight() is determined not at
compile time but at runtime. That’s right – late binding.

On one hand, inheritance allows that Collie, Poodle and Chihuahua objects can all be considered
objects of type Dog. All belong to the same hierarchy. All can be considered the same (parent)
type. All belong to the same Dog family. On the other hand, polymorphism untwines the
differences among these types. Inheritance underscores similarities; polymorphism accentuates
the differences within a family.

Now add a new class, StandardPoodle:

public class StandardPoodle extends Poodle
{
 public void weight()
 {
 System.out.println("80 lbs");
 }
 public void name()
 {
 System.out.println("Fifi");
 }
}

As in the previous example, only the test class needs to be changed:

public class Test1
{
 public static void main(String args[])
 {
 Dog[] dogList;
 System.out.println("How many dogs?");
 int dogNum, count = MyInput.readInt();
 dogList = new Dog[count];
 System.out.println("Enter 1,2,3, or 4 for each dog");
 for (int i = 0; i < count; i++)
 {
 System.out.print("? ");
 dogNum = MyInput.readInt();
 switch (dogNum)
 {
 case 1 : dogList[i] = new Collie();break;
 case 2 : dogList[i] = new Poodle();break;
 case 3 : dogList[i] = new Chihuahua ();break;
 case 4 : dogList[i] = new StandardPoodle();break;
 }
 }
 Doggie.allDogs(dogList);
 }
}

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

108

Output:

How many dogs?
4
Enter 1,2,3, or 4 for each dog
? 4
? 3
? 2
? 1

My name is Fifi
I weigh 80 lbs
L'arf

My name is Brutus
I weigh 5 lbs
Squeak

My name is Pierre
I weigh 25 lbs
L'arf

My name is Lassie
I weigh 100 lbs
Woof

Example:
This example demonstrates the necessity of casting:

public class Parent
{
 public hello()
 {
 System.out.println(“Hi”);
 }

}

public class Child1 extends Parent
{

 public void goodbye()
 {
 System.out.println("Goodbye");
 }
 public void hello()
 {
 System.out.println(“Hi”);
 }
}

public class Child2 extends Parent
{
 public void hello()
 {
 System.out.println("Bonjour");
 }
 public void goodbye()
 {
 System.out.println("Au revoir");
 }
}

Since every object of a subclass is-a object of the superclass the following code is acceptable
 Parent x;
 x = new Child1();

x.hello();
This is an example of polymorphism (“many forms”). Java will pick the correct hello method.

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

109

However, the following code will not even compile.
 Parent x;
 x = new Child1();

x.hello();
x.goodbye();
// To the compiler, x is a Parent reference and Parent has no goodbye() method.

A cast fixes the problem:
 ((Child1).x).goodbye();

Finally, consider the fragment:
 Parent x;
 x = new Child2();

x.hello();

The output is
 Bonjour

Although x is declared of type Parent, Java uses the hello() method of Child2. This is another
example of late (dynamic) binding. At run time, Java decides which version of hello() to use.
Parent.hello() or Child2.hello().

One final example, illustrates inheritance, polymorphism and the advantages and necessity of
overriding methods of the Object class.

Example:
The following class Student

• Overrides the toString() function inherited from Object.
• Overrides the equals() function inherited from Object with equality based on the id field.
• Implements Comparable (using the id field as a basis of comparison).

The rest of the class is fairly straightforward.

public class Student implements Comparable
{
 private String name;
 private String id;
 private double gpa;

 public Student()
 {
 name = "";
 id = "";
 gpa = 0.0;
 }
 public Student(String name, String id, double gpa)
 {
 this.name = name;
 this.id = id;
 this.gpa = gpa;
 }

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

110

 public boolean equals(Object x)
 {
 return id.equals(((Student)x).id);
 }

 public int compareTo(Object x)
 {
 return id.compareTo(((Student)x).id);
 }

 public String toString()
 {
 return id+" "+ name + " "+ gpa;
 }

public void setName(String name)
 {
 this.name = name;
 }

 public String getName ()
 {
 return name;
 }
 public void setId(String id)
 {
 this.id = id;
 }

 public String getId()
 {
 return id;
 }
 public void setGpa(double gpa)
 {
 this.gpa = gpa;
 }

 public double getGpa()
 {
 return gpa;
 }
}

The class Search contains a static method that performs a binary search on an array of Object,
based on a key of type Object. Remember that to perform a binary search, the array must be
sorted which mandates that the array type must implement Comparable.

public class Search
{
 public static int search(Object [] x, Object key, int size)
 {
 int lo = 0;
 int hi = size -1;
 int mid = (lo+hi)/2;

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

111

 while (lo <= hi)
 {
 if (key.equals(x[mid]))
 return mid;
 else if (((Comparable)key).compareTo(x[mid]) < 0)

 hi = mid -1;
 else
 lo = mid + 1;
 mid = (lo+hi)/2;
 }
 return -1;
 }
}
The following test class builds and then searches an array of Student:

public class TestStudent
{
 public static void main(String args[])
 {
 Student[] s = new Student[5];
 Student key = new Student();
 String name, id;
 double gpa;
 int place;

//populate the array
 for (int i = 0; i < 5; i++)
 {
 System.out.print("Name: ");
 name = MyInput.readString();
 System.out.print("id: ");
 id = MyInput.readString();
 System.out.print("GPA: ");
 gpa = MyInput.readDouble();
 s[i] = new Student(name, id, gpa);
 }

 Sort.sort(s);
 // search based on id

do
 {
 System.out.print("ID: ");
 id = MyInput.readString();
 if (id.equals(""))
 break;
 key.setId(id); // wrap id in a Student object
 place = Search.search(s, key,5); // key is a Student object
 if (place >= 0 && place < 5)
 System.out.println(s[place]);
 else
 System.out.println("not found");
 } while(true);
 }
}

Java and Object Oriented Programming
Day 3 - Inheritance and Polymorphism: Sameness and Differences

112

Output: // first build an array
Name: Rob Petri
id: 333
GPA: 3.1
Name: Laura Petri
id: 111
GPA: 3.5
Name: Sally Rogers
id: 444
GPA: 3.0
Name: Buddy Sorell
id: 222
GPA: 2.5
Name: Mel Cooley
id: 555
GPA: 4.0

//Search the array. key is the id
ID: 111
111 Laura Petri 3.5
ID: 222
222 Buddy Sorell 2.5
ID:
Press any key to continue . . .

The above classes demonstrate both inheritance and polymorphism:

• Inheritance permits upcasting. An array of any object type can be passed to the search
function since every class extends Object and every object type can be upcast to an
Object. Consequently, a Student array can be passed to search(). Inheritance asserts
that all classes are the same in some way; all classes are Objects.

• Polymorphism exploits differences within a hierarchy. Notice that search() method
makes a call to equals:

if (key.equals(x[mid]))
 return mid;

The apparent type of key is Object. The real type of key (in this example) is Student.
Java chooses the correct implementation of equals at run time – polymorphism in action.

Recall that earlier we mentioned that it is advisable to override the equals method inherited from
Object rather than defining a new equals method in a class. Suppose that Student implements
equals not by overriding the equals(Object o) method inherited from Object but as:
 boolean equals(Student x)
 {
 return id.equals(x.id);
 }
The method certainly performs correctly under most circumstances. However, take another look
at the search method. In the expression
 key.equals(x[mid])
the apparent type of key is Object and the real type of key is Student. x[mid] is of type Object and
because Student did not override equals(Object o) the version of equals defined in Object is
chosen. There is no other choice. Therefore, Equality is not based on the id field but on
reference equality, and none of our searches would return true. Polymorphism is broken.

The above example punctuates the close relationship between polymorphism and inheritance.
Moreover, the example underscores the benefits of inheriting from Object.

