The Fundamental Group of the Circle

Hsin-hao Su

May 1, 2007

Abstract

In this paper, we use covering spaces to prove that the fundamental group of the circle is the set of integers.

Contents

1 Introduction 1

2 Preliminary 1
 2.1 Fundamental Group .. 3

3 The Main Result 3
 3.1 Covering Spaces .. 3
 3.2 The Fundamental Group of the Circle 3

1 Introduction

In this paper, we use covering spaces to prove that the fundamental group of the circle is the set of integers.

2 Preliminary

Definition 2.1 The circle is the subset of \mathbb{R}^2 which consists the pairs (x, y) such that $x^2 + y^2 = 1$. It is denoted by S^1.

Definition 2.2 Given points x and y of the space X, a path in X from x to y is a continuous map $f : [0, 1] \rightarrow X$ such that $f(0) = x$ and $f(1) = y$.
Definition 2.3 A space X is said to be **path-connected** if every pair of points of X can be joined by a path in X.

Definition 2.4 If f and f' are continuous maps of the space X into the space Y, we say that f is **homotopic** to f' is there is a continuous map $F : X \times I \to Y$ such that

$$F(x, 0) = f(x) \text{ and } F(x, 1) = f'(x)$$

for each x. (Here $I = [0,1]$.) The map F is called a **homotopy** between f and f'.

Notation 2.5 If f is homotopic to f' we write $f \simeq f'$.

Definition 2.6 If $f \simeq f'$ and f' is a constant map, we say that f is **nullhomotopic**.

Definition 2.7 Two paths f and f', mapping the interval $I = [0,1]$ into X, are said to be path homotopic if they have the same initial point x_0 and the same final point x_1 and if there is a continuous map $F : I \times I \to X$ such that

$$F(x, 0) = f(x) \quad \text{and} \quad F(x, 1) = f'(x),$$
$$F(0, t) = x_0 \quad \text{and} \quad F(1, t) = x_1,$$

for each $s, t \in I$. We call F a **path homotopy** between f and f'.

Notation 2.8 If f is path homotopic to f' we write $f \simeq_p f'$.

Lemma 2.9 ([Munkres] Lemma 51.1) The relations \simeq and \simeq_p are equivalence relations.

Definition 2.10 If f is a path in X from x_0 to x_1, and if g is a path in X from x_1 to x_2, we define the product $f \ast g$ of f and g to be the path h given by the equations

$$h(s) = \begin{cases} f(2s) & \text{for } s \in [0, \frac{1}{2}] \\ g(2s - 1) & \text{for } s \in [\frac{1}{2}, 1] \end{cases}.$$
2.1 Fundamental Group

Definition 2.11 Let \(X \) be a space and \(x_0 \) be a point of \(X \). A path in \(X \) that begins and ends at \(x_0 \) is called a loop based at \(x_0 \).

Proposition 2.12 Let \(X \) be a space and \(x_0 \) be a point of \(X \). The set of path homotopy classes of loops bases at \(x_0 \), with the operation \(*\), is a group, called the fundamental group of \(X \) relative to the base point \(x_0 \) and denoted by \(\pi_1 (X, x_0) \).

Definition 2.13 A space \(X \) is said to be simply connected if it is a path-connected space and if \(\pi_1 (X, x_0) \) is the trivial (one-element) group for some \(x_0 \in X \).

3 The Main Result

3.1 Covering Spaces

Definition 3.1 Let \(p : E \to B \) be a continuous surjective map. The open set \(U \) of \(B \) is said to be evenly covered by \(p \) is the interse image \(p^{-1} (U) \) can be written as the union of disjoint open sets \(V_\alpha \) in \(E \) such that for each \(\alpha \), the restriction of \(p \) to \(V_\alpha \) is a homeomorphism of \(V_\alpha \) onto \(U \).

Definition 3.2 Let \(p : E \to B \) be a continuous surjective map. If every point \(b \) of \(B \) has a neighborhood \(U \) that is evenly covered by \(p \), then \(p \) is called a covering map, and \(E \) is said to be a covering space of \(B \).

Theorem 3.3 ([Munkres] Theorem 53.1) The map given by the equation

\[
p (x) = (\cos 2\pi x, \sin 2\pi x)
\]

is a covering map.

3.2 The Fundamental Group of the Circle

Definition 3.4 Let \(p : E \to B \) be a map. If \(f \) is a continuous mapping of some space \(X \) into \(B \), a lifting of \(f \) is a map \(\tilde{f} : X \to E \) such that \(p \circ \tilde{f} = f \).
Remark 3.5 We use the following diagram to represent the concept of lifting.

\[\begin{array}{ccc}
E & \xrightarrow{\tilde{f}} & B \\
\downarrow p & & \downarrow p \\
X & \xrightarrow{f} & B
\end{array} \]

Definition 3.6 Let \(p : E \to B \) be a covering map and \(b_0 \in B \). Choose \(e_0 \) so that \(p(e_0) = b_0 \).

Given an element \([f]\) of \(\pi_1(B, b_0) \). Let \(\tilde{f} \) be the lifting of \(f \) to a path in \(E \) that begins at \(e_0 \). Let \(\phi([f]) \) denote the end point \(\tilde{f}(1) \) of \(\tilde{f} \). Then \(\phi \) is well-defined set map

\[\phi : \pi_1(B, b_0) \to p^{-1}(b_0). \]

We call \(\phi \) the lifting correspondence derived from the covering map \(p \).

Theorem 3.7 ([Munkres] Theorem 54.4) Let \(p : E \to B \) be a covering map and \(p(e_0) = b_0 \), where \(e_0 \in E \) and \(b_0 \in B \) are the base points. If \(E \) is path connected, then the lifting correspondence

\[\phi : \pi_1(B, b_0) \to p^{-1}(b_0) \]

is surjective. If \(E \) is simply connected, it is bijective.

Proof. If \(E \) is path connected, then, given \(e_1 \in p^{-1}(b_0) \), there is a path \(\tilde{f} \) in \(E \) from \(e_0 \) to \(e_1 \). Then \(f = p \circ \tilde{f} \) is a loop in \(B \) at \(b_0 \), and \(\phi([f]) = e_1 \) by definition. Thus, \(\phi \) is surjective.

Suppose that \(E \) is simply connected. Let \([f]\) and \([g]\) be two elements of \(\pi_1(B, b_0) \) such that \(\phi([f]) = \phi([g]) \). Let \(\tilde{f} \) and \(\tilde{g} \) be the liftings of \(f \) and \(g \), respectively, to paths in \(E \) that begin at \(e_0 \). Then \(\tilde{f}(1) = \tilde{g}(1) \). Since \(E \) is simply connected, there is a path homotopy \(\tilde{F} \) in \(E \) between \(\tilde{f} \) and \(\tilde{g} \). Then \(p \circ \tilde{F} \) is a path homotopy in \(B \) between \(f \) and \(g \). This means that \(f \simeq g \), or \([f] = [g]\). Thus, \(\phi \) is injective. Therefore, \(\phi \) is bijective.

Theorem 3.8 The fundamental group of \(S^1 \) is isomorphic to the additive group of integers.

Proof. Let \(p : \mathbb{R} \to S^1 \) be the covering map of Theorem 3.3. Let \(e_0 = 0 \), and let \(b_0 = p(e_0) \).

Then \(p^{-1}(b_0) \) is the set \(\mathbb{Z} \) of integers. Since \(\mathbb{R} \) is simply connected, the lifting correspondence

\[\phi : \pi_1(S^1, b_0) \to \mathbb{Z} \]
is bijective by the theorem 3.7. So, if we can show that ϕ is a group homomorphism, then the theorem is proved.

Given $[f]$ and $[g]$ in $\pi_1(S^1, b_0)$. Let \tilde{f} and \tilde{g} be their respective lifting to paths on \mathbb{R} beginning at 0. Let $n = \tilde{f}(1)$ and $m = \tilde{g}(1)$. Then, $\phi([f]) = n$ and $\phi([g]) = m$ by the definition of ϕ. Let h be the path

$$h(s) = n + \tilde{g}(s)$$

on \mathbb{R}. Because $p(n + x) = p(x)$ for all $x \in \mathbb{R}$, the path h is a lifting of g which begins at n. Thus, the product $\tilde{f} \ast h$ is defined, and it is the lifting of $f \ast g$ that begins at 0. The end point of this path is $h(1) = n + m$. Then, by definition,

$$\phi([f] \ast [g]) = n + m = \phi([f]) + \phi([g]).$$

Therefore, ϕ is a group homomorphism. ■

References
