A Survey of the BP Theory

Hsin-hao Su

December 25, 2002

1 Preliminary

In this section, we state some useful definitions, terminologies, and propositions. Let A_* be the dual Steenrod algebra and $A_* = \mathbb{Z}/2[\xi_1, \xi_2, \cdots]$, where $\deg \xi_i = 2^i - 1$.

Let $m_A: A_* \otimes A_* \to A_*$ be the multiplication of A_* .

Proposition 1.1 Let Δ be the coproduct of A_* , i.e., $\Delta: A_* \to A_* \otimes A_*$. Then $\Delta(\xi_n) = \sum_{0 \le i \le n} \xi_{n-i}^{2^i} \otimes \xi_i$.

Proof. See [Milnor1958]. ■

Let E be the exterior algebra of A_* , i.e., $E = \mathbb{Z}/2[\xi_1, \xi_2, \cdots] / (\xi_i^2)$. We have a natural projection $p_E : A_* \longrightarrow E$. By combining p_E and all operations of A_* , we can admit that E is a Hopf algebra.

2 The Thom Spectrum MU

Let MU be the Thom spectrum.

Since MU is a ring spectrum, we have a multiplication, $m_{MU}: H_*(MU; \mathbb{Z}/2) \otimes H_*(MU; \mathbb{Z}/2) \to H_*(MU; \mathbb{Z}/2)$.

We know that $H_*(\mathbb{C}P^{\infty}; \mathbb{Z}/2) \cong \mathbb{Z}/2[y_1, y_2, \cdots]$, where $\deg y_i = 2i$. And, there is a map $C: \sum^{-2} \mathbb{C}P^{\infty} \longrightarrow MU$.

Proposition 2.1 $H_*(MU; \mathbb{Z}/2) \cong \mathbb{Z}/2[b_1, b_2, \cdots]$, where deg $b_i = 2i$.

According to Switzer's book[SwitzerBook1], we have the following Switzer formula.

Proposition 2.2 Let $\psi_{\mathbb{C}P^{\infty}}$ be the left A_* -coaction of $H_*(\mathbb{C}P^{\infty}; \mathbb{Z}/2)$. Then we have $\psi_{\mathbb{C}P^{\infty}}(y_n) = \sum_{i=0}^n \left[(\xi)_{n-i}^i \right]^2 \otimes y_i$, where $\xi = 1 + \xi_1 + \xi_2 + \cdots$.

Proposition 2.3 Let ψ_{MU} be the left A_* -coaction of $H_*(MU; \mathbb{Z}/2)$. Then we have $\psi_{MU}(b_n) = \sum_{i=1}^{n+1} \left[(\xi)_{n+1-i}^i \right]^2 \otimes b_{i-1}$, where $\xi = 1 + \xi_1 + \xi_2 + \cdots$.

Proof. By the computation of $H_*(MU; \mathbb{Z}/2)$, we get $C_*(y_{n+1}) = b_n$ for all n. We have the following commutative diagram

$$\begin{array}{cccc}
H_*\left(\mathbb{C}P^{\infty};\mathbb{Z}/2\right) & \xrightarrow{\psi_{\mathbb{C}P^{\infty}}} & A_* \otimes H_*\left(\mathbb{C}P^{\infty};\mathbb{Z}/2\right) \\
\downarrow & & \downarrow \\
C_* & \downarrow & \downarrow & 1 \otimes C_* \\
\downarrow & & \downarrow \\
H_*\left(MU;\mathbb{Z}/2\right) & \xrightarrow{\psi_{MU}} & A_* \otimes H_*\left(MU;\mathbb{Z}/2\right)
\end{array}$$

Therefore,

$$\psi_{MU}(b_n) = \psi_{MU}(C_*(y_{n+1}))$$

$$= (1 \otimes C_*) \circ \psi_{\mathbb{C}P^{\infty}}(y_{n+1})$$

$$= (1 \otimes C_*) \left(\sum_{i=0}^{n+1} \left[(\xi)_{n+1-i}^i \right]^2 \otimes y_i \right)$$

$$= \sum_{i=1}^{n+1} \left[(\xi)_{n+1-i}^i \right]^2 \otimes b_{i-1}.$$

3 Brown-Peterson Algebraic Splitting

Let $P = \mathbb{Z}/2 [\bar{b}_i | i \neq 2^l - 1]$. We define $f: H_*(MU; \mathbb{Z}/2) \longrightarrow P$ by

$$f(b_n) = \begin{cases} \bar{b}_n & \text{, if } n \neq 2^l - 1 \text{ for all } l \\ 0 & \text{, if } n = 2^l - 1 \text{ for some } l \end{cases}$$

and \bar{f} is defined as the following composite map

$$H_*(MU; \mathbb{Z}/2) \xrightarrow{\psi_{MU}} A_* \otimes H_*(MU; \mathbb{Z}/2) \xrightarrow{1 \otimes f} A_* \otimes P_*$$

i.e., $\bar{f} = (1 \otimes f) \circ \psi_{MU}$. By the multiplication of $H_*(MU; \mathbb{Z}/2)$, we can define the multiplication of P, denoted by m_P , as the following diagram

$$\begin{array}{cccc} H_*\left(MU\right) \otimes H_*\left(MU\right) & \longrightarrow^{m_{MU}} & \longrightarrow & H_*\left(MU\right) \\ \downarrow & & & \downarrow & & \downarrow \\ f \otimes f & \downarrow & & \downarrow & f \\ \downarrow & & & \downarrow & & \downarrow \\ P \otimes P & & \longrightarrow^{m_P} & \longrightarrow & P \end{array}$$

We know that \bar{f} is an algebra map by checking the commutativity of the following diagram

where H means $H_*(MU; \mathbb{Z}/2)$. And, in the following diagram

(A) commutes since $H_*(MU; \mathbb{Z}/2)$ is a A_* -comodule and (B) commutes clearly. So, \bar{f} is a A_* -algebra map.

Lemma 3.1 P is a A_* -algebra with a trivial coaction, that is, $\psi_P(b_n) = 1 \otimes b_n$ for all n. In addition, P is an E-algebra and the E-coaction of P, named by ψ_P^E , is a trivial coaction.

Proof. Consider P as a subalgebra of $A_* \otimes P$. By the above diagram, it is clear that P is a A_* -algebra. Since P has an extended A_* -comodule structure, it makes ψ_P a trivial coaction. Clearly, P is an E-algebra with trivial coaction.

Now, we are on the position to prove the Brown-Peterson algebraic splitting. Firstly, we prove a technical lemma.

Lemma 3.2 Let M^k be the subalgebra of M generated by $1, \xi_1, \xi_2, \dots, \xi_k$ and P^k be the subalgebra of P generated by $1, \bar{b}_1, \bar{b}_2, \dots, \bar{b}_k$. Then we have

- 1. If $k = 2^{l} 1$ for some l, then $\bar{f}(b_k) = \xi_l^2 \otimes 1 + X_1$, where $X_1 \in M^{k-1} \otimes P^{2^k 2}$.
- 2. If $2^{l-1} 1 < k < 2^l 1$ for some l, then $\bar{f}(b_k) = 1 \otimes \bar{b}_k + X_2$, where $X_2 \in M^{k-1} \otimes P^{k-1}$.

Proof. It is true by expending Swizter formula. See [SwitzerBook1] lemma 20.6 in page 493.

Proposition 3.3 (Brown-Peterson) $H_*(MU; \mathbb{Z}/2) \cong M \otimes_{\mathbb{Z}/2} P$ as A_* -algebra where $M = \mathbb{Z}/2 \left[\xi_1^2, \xi_2^2, \cdots\right]$ is an A_* -subalgebra of A_* and $P = \mathbb{Z}/2 \left[\bar{b}_i | i \neq 2^l - 1\right]$.

Proof. Let \bar{f} be defined as above. By the Switzer formula, we observe that $\operatorname{Im} \bar{f} \subseteq M \otimes P$. Therefore, $\bar{f}: H_*(MU; \mathbb{Z}/2) \longrightarrow M \otimes P$ is an A_* -algebra map.

As $\mathbb{Z}/2$ -vector spaces, we have that dim $H_*(MU; \mathbb{Z}/2) = \dim M \otimes P$, since both dimensions are finite and we have the following 1-1 correspondences

$$\begin{cases} b_n & \longleftrightarrow 1 \otimes \bar{b}_n \\ b_{2^l-1} & \longleftrightarrow \xi_l^2 \otimes 1 \end{cases}, \text{ for } n \neq 2^l - 1 \text{ for some } l \end{cases},$$

in basis elements for counting dimensions. In proving $H_*(MU; \mathbb{Z}/2) \cong M \otimes_{\mathbb{Z}/2} P$ as $\mathbb{Z}/2$ -vector spaces, it suffices to show that \bar{f} is onto, i.e., $M \otimes P \subseteq \operatorname{Im} \bar{f}$. Of course, $M^0 \otimes P^0 \subseteq \operatorname{Im} \bar{f}$. For all t, s, we will prove $M^t \otimes P^s \subseteq \operatorname{Im} \bar{f}$ by induction on both indexes(See [SwitzerBook1] theorem 20.7 in page 493). Without loss of generality, we assume that $M^{i-1} \otimes P^{2^{i-2}} \subseteq \operatorname{Im} \bar{f}$ for some i > 1. We want to prove $M^i \otimes P^d \subseteq \operatorname{Im} \bar{f}$ for $2^i - 2 \le d \le 2^{i+1} - 2$ to complete our induction

step. By lemma 3.2(1), we know that $M^i \otimes P^0 \subseteq \operatorname{Im} \bar{f}$. Assume that $M^i \otimes P^{j-1} \subseteq \operatorname{Im} \bar{f}$ for some $1 < j < 2^{i+1} - 1$. If $j = 2^d - 1$ for some d > 1 such that $1 \le d \le i$, then $P^j = P^{j-1}$ by its definition, that is, $M^i \otimes P^j \subseteq \operatorname{Im} \bar{f}$. Otherwise, $M^0 \otimes P^j \subseteq \operatorname{Im} \bar{f}$ by lemma 3.2(2). Since \bar{f} is an A_* -algebra map, we conclude that $M^i \otimes P^j \subseteq \operatorname{Im} \bar{f}$ by using multiplication. This completes the induction step.

Combining two results in above, we conclude that $H_*(MU; \mathbb{Z}/2) \cong M \otimes_{\mathbb{Z}/2} P$ as A_* -algebra.

4 Brown-Peterson Spectrum

Brown and Peterson first constructed a spectrum, BP, such that $H_*(BP) = \mathbb{Z}/2[\xi_1^2, \xi_2^2, \cdots]$. And Quillen used the multiplicative map and idempotent to construct a map g in the following

$$BP \longrightarrow MU_{(2)} \stackrel{g}{\longrightarrow} MU_{(2)}.$$

5 To Compute the stable homptopy group of MU

We use the Adams spectral sequence to compute the $\pi_*(MU)$, the stable homotopy group of MU.

Proposition 5.1 Let Q be a left A_* -comodule which is concentrated in even dimensions. Then Q is a comodule over M where $M = \mathbb{Z}/2\left[\xi_1^2, \xi_2^2, \cdots\right]$.

Proof. Let ψ be the left coaction of Q. For all $q \in Q$, we assume $\psi(q) = \sum_k a_k \otimes q_k$, where $a_k \in A_*$ and $q_k \in Q$. Since deg q and deg q_k are all even, deg a_k must be even, i.e., a_k is represented by a multiplication of even number element in A_* . Assume that there exists an $a_i \in A_* \backslash M$, i.e., $a_i = a' \xi_i^k$, where a' does not consist by ξ_i and k is odd. Consider the coassociativity of ψ ,

$$\begin{array}{cccc} P & \longrightarrow \stackrel{\psi}{\longrightarrow} & A_* \otimes P \\ \downarrow & & \downarrow \\ \psi & \downarrow & \Delta \otimes 1 \\ \downarrow & & \downarrow \\ A_* \otimes P & \longrightarrow \stackrel{1 \otimes \psi}{\longrightarrow} & A_* \otimes A_* \otimes P \end{array}$$

We have $(\Delta \otimes 1)$ $(a_i \otimes q_i) = \Delta(a_i) \otimes q_i = \left(\sum_s m_s \otimes a_s\right) \otimes q_i$, where $m_s \in M$ and $a_s \in A_*$. By another way, we get $(1 \otimes \psi)$ $(a_i \otimes q_i) = a_i \otimes \psi(q_i) = a_i \otimes \left(\sum_t a_t \otimes q_t\right)$, where $a_t \in A_*$ and $q_t \in Q$. But $a_i \notin M$, so we conclude that $(\Delta \otimes 1)$ $(a_i \otimes q_i) \neq (1 \otimes \psi)$ $(a_i \otimes q_i)$. Therefore, $a_i \in M$ for all $i, i.e., \psi(q) \in M \otimes Q$. Q is a comodule over M.

The E_2 -term of the Adams spectral sequence to compute $\pi_*(MU)$ is

$$\operatorname{Ext}_{A_{*}}^{*,*}\left(\mathbb{Z}/2,H_{*}\left(MU;\mathbb{Z}/2\right)\right).$$

Before we determine it, we introduce a special case of the change-of-rings isomorphism theorem first. The cotensor product of A_* and P over E, denoted by $A_*\square_E P$, is the kernel of the following map

$$A_* \otimes_{\mathbb{Z}/2} P \longrightarrow \xrightarrow{\Delta \otimes 1 - 1 \otimes \psi_P^E} \longrightarrow A_* \otimes_{\mathbb{Z}/2} E \otimes_{\mathbb{Z}/2} P.$$

Proposition 5.2 Let A_* be the dual Steenrod algebra and E be its exterior algebra. By the proposition proved in Section ??, we know that $H_*(MU; \mathbb{Z}/2) \cong M \otimes_{\mathbb{Z}/2} P$ as A_* -algebra where M and P are defined as above. And we have

$$\operatorname{Ext}_{A_*}^{*,*}(\mathbb{Z}/2, A_*\square_E P) \cong \operatorname{Ext}_{A_*}^{*,*}(\mathbb{Z}/2, P)$$
.

Proof. The proof of this theorem is just diagram chasing. See [SwitzerBook1] theorem 20.16 in page 498. ■

Corollary 5.3 We have

$$\operatorname{Ext}_{A_*}^{*,*}\left(\mathbb{Z}/2,A_*\otimes_{\mathbb{Z}/2}P\right)\cong\operatorname{Ext}_E^{*,*}\left(\mathbb{Z}/2,P\right)\cong\operatorname{Ext}_E^{*,*}\left(\mathbb{Z}/2,\mathbb{Z}/2\right)\otimes_{\mathbb{Z}/2}P.$$

Proof. By the usual projection from A_* to E, we know that $\Delta(\xi_n) = \sum_{0 \le i \le n} \xi_{n-i}^{2^i} \otimes \xi_i$ for all n is the right E-comodule formula of the A_* . Obviously, we have $M \otimes_{\mathbb{Z}/2} P \subseteq \ker \left(\Delta \otimes 1 - 1 \otimes \psi_P^E\right)$. Let $\xi = \xi_{i_1}^{n_1} \xi_{i_2}^{n_2} \cdots \xi_{i_k}^{n_k} \in A_*$. We have $\Delta(\xi) = \prod_{t=1}^k \left(\Delta(\xi_{i_t})\right)^{n_t}$. Let $p \in P$. According to Lemma

3.1, we have

$$(\Delta \otimes 1 - 1 \otimes \psi_P^E) (\xi \otimes p)$$

$$= \prod_{t=1}^k (\Delta (\xi_{i_t}))^{n_t} \otimes p - \xi \otimes 1 \otimes p$$

$$= \prod_{t=1}^k \left(\sum_{0 \le j \le i_t} \xi_{i_t - j}^{2^j} \otimes \xi_j \right)^{n_t} \otimes p - \xi \otimes 1 \otimes p$$

$$= \prod_{t=1}^k \left(\sum_{1 \le j \le i_t} \xi_{i_t - j}^{2^j} \otimes \xi_j \right)^{n_t} \otimes p$$

$$+ \sum_{s=1}^k (\xi_{i_s} \otimes 1)^{n_s} \left(\prod_{\substack{t=1 \ t \ne s}}^k \left(\sum_{1 \le j \le i_t} \xi_{i_t - j}^{2^j} \otimes \xi_j \right)^{n_t} \right) \otimes p.$$

If $\xi \otimes p \in \ker \left(\Delta \otimes 1 - 1 \otimes \psi_P^E\right)$, then we claim that n_i is even for all i, that is $\ker \left(\Delta \otimes 1 - 1 \otimes \psi_P^E\right) \subseteq M \otimes_{\mathbb{Z}/2} P$. If not, there exists an i such that n_i is the largest odd number of all powers in ξ . Observing the above formulation, the term $\alpha \otimes \xi_{n_i} \otimes p$ can not be eliminated since it only occur once. So, ξ must belong to M. This proves that $A_* \square_E P = M \otimes_{\mathbb{Z}/2} P$, that is,

$$\operatorname{Ext}_{A_*}^{*,*}\left(\mathbb{Z}/2, A_* \otimes_{\mathbb{Z}/2} P\right) = \operatorname{Ext}_{A_*}^{*,*}\left(\mathbb{Z}/2, A_* \square_E P\right) \cong \operatorname{Ext}_E^{*,*}\left(\mathbb{Z}/2, P\right).$$

Since P is coaction trivial, we can easily conclude that

$$\operatorname{Ext}_{E}^{*,*}(\mathbb{Z}/2, P) \cong \operatorname{Ext}_{E}^{*,*}(\mathbb{Z}/2, \mathbb{Z}/2) \otimes_{\mathbb{Z}/2} P,$$

by computing the cobar complex of P over E directly.

Recall a well-known result.

Proposition 5.4 $Ext_E^{*,*}(\mathbb{Z}/2,\mathbb{Z}/2) = \mathbb{Z}/2\left[\bar{\xi}_1,\bar{\xi}_2,\cdots\right], \text{ where bideg } \bar{\xi}_i = (1,2^i-1).$

Proof. Consider the cobar complex of $\mathbb{Z}/2$ over E,

$$\mathbb{Z}/2 \longrightarrow \bar{E} \longrightarrow \bar{E} \otimes \bar{E} \longrightarrow \cdots,$$

where \bar{E} is the argument algebra of E. The multiplication of this complex is the usual tensor product of graded module. So $Ext_E^{*,*}(\mathbb{Z}/2,\mathbb{Z}/2)$ must be a ring. Let $\Delta_E: E \longrightarrow E \otimes E$ be the

coalgebra map. By Proposition 1.1, we get $\Delta_E(\xi_i) = 1 \otimes \xi_i + \xi_i \otimes 1$ for all *i*. Consider the *i*-th line, that is,

$$\overset{i-1}{\otimes} \bar{E} \xrightarrow{\longrightarrow} \overset{\Delta_E^{i-1}}{\longrightarrow} \overset{i}{\otimes} \bar{E} \xrightarrow{\longrightarrow} \overset{\Delta_E^{i}}{\longrightarrow} \overset{i+1}{\otimes} \bar{E}.$$

We claim that the cycle of the *i*-th line is $\overset{i}{\otimes}\xi_{n_i}$. It is clear that $\Delta_E^i\left(\overset{i}{\otimes}\xi_{n_i}\right)=0$. Let $\xi\in\overset{i}{\otimes}\bar{E}$. If ξ is not of the form $\overset{i}{\otimes}\xi_{n_i}$, then we assume that $\xi=\overset{i}{\otimes}\alpha_i$, where $\alpha_i\in\bar{E}$ with a j such that $\alpha_j=\xi_{n_1}\xi_{n_2}\cdots\xi_{n_k}$, where k>1. We have $\Delta_E^i\left(\alpha_j\right)=\prod_{t=1}^k\left(1\otimes\xi_{n_t}+\xi_{n_t}\otimes 1\right)-1\otimes\alpha_j-\alpha_j\otimes 1$. Therefore, $\Delta_E^i\left(\xi\right)\neq 0$. We conclude that the cycle of the *i*-th line is $\overset{i}{\otimes}\xi_{n_i}$. To be continued. \blacksquare Since only $MU_{(2)}$ has a converging Adams spectral sequence, we replace MU by $MU_{(2)}$. By the properties of $MU_{(2)}$, we know that the calculations in above are the same. Therefore, we can get the same answers, that is, the E_2 -term of $MU_{(2)}$ is $\mathbb{Z}/2\left[\bar{\xi}_1,\bar{\xi}_2,\cdots\right]\otimes_{\mathbb{Z}/2}P$. Consider the differentials of the Adams spectral sequence which converges to $\pi_*\left(MU_{(2)}\right)$,

$$d^r: E_r^{s,t} \longrightarrow E_r^{s+r,t+r+1}.$$

Observing our E_2 -term, since bideg $\bar{\xi}_i = (1, 2^i - 1)$ and bideg $b_j = (0, 2j)$ where $j \neq 2^l - 1$ for all l, we have $E_2^{s,t} = 0$ if t - s is odd. It follows that all differentials vanish, that $d^r = 0$, because they shift degree t - s by 1. Therefore, our Adams spectral sequence collapse, that is, $E_{\infty}^{*,*} \cong E_2^{*,*}$.

The last thing we need to do is to solve the group extension problem. Before we do this, we give a useful lemma first.

Lemma 5.5 Let X be a space or a spectrum. The Adams spectral sequence with E_2 -term equals to $\operatorname{Ext}_{A_*}^{*,*}(\mathbb{Z}/2, H_*(X; \mathbb{Z}/2))$ converges to $\pi_*(X_{(2)})$. Let $x \in \pi_*(X_{(2)})$ which is detected by $a \in E_{\infty}^{s,t}$. Then 2x is detected by $\xi_1 \otimes a \in E_{\infty}^{s+1,t+1}$.

Here is the answer of this section.

Proposition 5.6 $\pi_*(MU_{(2)}) \cong \mathbb{Z}[m_1, m_2, \cdots]$ where deg $m_i = 2i$.

Proof. We have the Adams spectral sequence E_{∞} -term, $Ext_E^{*,*}(\mathbb{Z}/2,\mathbb{Z}/2) \otimes_{\mathbb{Z}/2} P$ converging to $\pi_*(MU_{(2)})$. If $d \neq 2^l - 1$ for all l, then let m_d be the element in $\pi_{2d}(MU_{(2)})$, that

is $m_d: S^{2d} \longrightarrow MU_{(2)}$, detected by b_d in $E^{0,2d}_{\infty}$. If $d=2^l-1$ for some l, let m_d be the element in $\pi_{2\left(2^{l-1}\right)}\left(MU_{(2)}\right)$, that is $m_d: S^{2\left(2^{l-1}\right)} \longrightarrow MU_{(2)}$, detected by $\bar{\xi}_d$ in $E^{1,2^d-1}_{\infty}$. Since $\left\{b_d \mid d \neq 2^l-1 \text{ for all } l\right\} \cup \left\{\bar{\xi}_d \mid d=2^l-1 \text{ for some } l\right\}$ generate our E_{∞} -term, $\{m_d\}$ is the set of generators of $\pi_*\left(MU_{(2)}\right)$. Firstly, we claim that $m_im_j \neq 0$ for all i,j. Since m_im_j is detected by an element α in $E^{0,*}_{\infty}$, $E^{1,*}_{\infty}$ or $E^{2,*}_{\infty}$ which all have no relations, it follows $m_im_j \neq 0$. Otherwise, α is zero in the filtration quotient will become a relation. Secondly, by lemma 5.5, we know that m_i is torsion free for all i since our E_{∞} -term has no relation looks like $\xi_1 \otimes _$. Thirdly, let $\sum_{i=1}^k n_i \alpha_i$ be in $\pi_*\left(MU_{(2)}\right)$. Assume $\sum_{i=1}^k n_i \alpha_i$ is in the j-th filtration, that is $\sum_{i=1}^k n_i \alpha_i \in F^j\left(\pi_*\left(MU_{(2)}\right)\right)$. Consider the natural projection

$$P: F^j \longrightarrow \frac{F^j}{F^{j+1}} \cong E^{j,*}_{\infty}.$$

If $P\left(\sum_{i=1}^k n_i \alpha_i\right) = 0$, then $P\left(\sum_{i=1}^k n_i \alpha_i\right)$ become a relation in $E_{\infty}^{*,*}$. It is a contradiction. It follows that $\sum_{i=1}^k n_i \alpha_i \neq 0$, that is $\pi_*\left(MU_{(2)}\right)$ has no relation. Therefore, we conclude that $\pi_*\left(MU_{(2)}\right) \cong \mathbb{Z}\left[m_1, m_2, \cdots\right]$ where $\deg m_i = 2i$.

6 Brown-Peterson Topological Splitting

Finally, we are on a good position to give a stable splitting of $MU_{(2)}$ which admits BP as a stable summand.

Proposition 6.1 (Brown-Peterson) $MU_{(2)} \simeq \bigvee \sum^{n} BP$

Proof. As section 4, we have a stable map

$$f: BP \longrightarrow MU_{(2)}$$

which induces the inclusion map in $\mathbb{Z}/2$ -homology, that is,

$$f_*: H_*(BP) \longrightarrow H_*(MU_{(2)})$$

is the natural inclusion map. If $i \neq 2^l - 1$ for all l, let g_i be the map represents the generator m_i of $\pi_{2i}\left(MU_{(2)}\right)$ which is detected by $b_i \in E_{\infty}^{0,2i}$, i.e.,

$$g_i: S^{2i} \longrightarrow MU_{(2)}$$

and m_i is in the 0-th filtration. In the Adams tower,

$$\begin{array}{cccc} & \vdots & & & & \\ & \downarrow & & & \\ \hline H\left(\mathbb{Z}/2\right) \wedge MU_{(2)} & \longrightarrow & H\left(\mathbb{Z}/2\right) \wedge \overline{H\left(\mathbb{Z}/2\right)} \wedge MU_{(2)} \\ \downarrow & & & & \\ S^n & \longrightarrow & S^0 \wedge MU_{(2)} & \longrightarrow & H\left(\mathbb{Z}/2\right) \wedge MU_{(2)} \end{array} ,$$

the bottom horizontal map, named by T, is the stable Hurewicz map from $\pi_*(MU_{(2)})$ to $H_*(MU_{(2)})$. Since m_i is in the 0-th filtration and not in the 1-st filtration, we have $T(g_i) \neq 0$. Therefore, $T(g_i)$ must be the generator of $H_{2i}(MU_{(2)})$, i.e., b_i . Define

$$F: BP \wedge \left(\vee S^{2i}\right) \xrightarrow{f \wedge (\wedge g_i)} MU_{(2)} \wedge \left(\vee MU_{(2)}\right) \xrightarrow{h \circ \bar{h}} MU_{(2)},$$

where h is the ring map of ring spectrum $MU_{(2)}$ and \bar{h} is the folding map. It follows that F_* is an isomorphism between $H_*\left(BP \wedge (\wedge S^{2i})\right)$ and $H_*\left(MU_{(2)}\right)$. By Hurewicz theorem and Whitehead theorem, we know that $BP \wedge (\wedge S^{2i}) \simeq MU_{(2)}$ stably, that is, $MU_{(2)} \simeq \bigvee \sum^n BP$.

References

[Brown-Peterson1966] E.H. Brown, Jr. and F.P. Peterson, A Spectrum whose \mathbb{Z}_p Cohomology Is the Algebra of Reduced p^{th} Powers, Topology, 5(1966), 149-154.

[Milnor1958] J.W. Milnor, The Steenrod Algebra and Its Dual, Ann. of Math., 67(1958), 150-171.

[SwitzerBook1] R.M. Switzer, Algebraic Topology, homotopy and homology, Springer-Verlag, Berlin and New York, 1975.