A Survey of the $B P$ Theory

Hsin-hao Su

December 25, 2002

In this article, $\longrightarrow \longrightarrow \longrightarrow, \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$ and $\begin{gathered}\downarrow \\ \downarrow \\ \downarrow\end{gathered} \quad$ all mean a long arrow.

1 Preliminary

In this section, we state some useful definitions, terminologies, and propositions. Let A_{*} be the dual Steenrod algebra and $A_{*}=\mathbb{Z} / 2\left[\xi_{1}, \xi_{2}, \cdots\right]$, where $\operatorname{deg} \xi_{i}=2^{i}-1$.

Let $m_{A}: A_{*} \otimes A_{*} \rightarrow A_{*}$ be the multiplication of A_{*}.

Proposition 1.1 Let Δ be the coproduct of A_{*}, i.e., $\Delta: A_{*} \rightarrow A_{*} \otimes A_{*}$. Then $\Delta\left(\xi_{n}\right)=$ $\sum_{0 \leq i \leq n} \xi_{n-i}^{2^{i}} \otimes \xi_{i}$.

Proof. See [Milnor1958].
Let E be the exterior algebra of A_{*}, i.e., $E=\mathbb{Z} / 2\left[\xi_{1}, \xi_{2}, \cdots\right] /\left(\xi_{i}^{2}\right)$. We have a natural projection $p_{E}: A_{*} \longrightarrow E$. By combining p_{E} and all operations of A_{*}, we can admit that E is a Hopf algebra.

2 The Thom Spectrum MU

Let $M U$ be the Thom spectrum.
Since $M U$ is a ring spectrum, we have a multiplication, $m_{M U}: H_{*}(M U ; \mathbb{Z} / 2) \otimes H_{*}(M U ; \mathbb{Z} / 2) \rightarrow$ $H_{*}(M U ; \mathbb{Z} / 2)$.

We know that $H_{*}\left(\mathbb{C} P^{\infty} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2\left[y_{1}, y_{2}, \cdots\right]$, where $\operatorname{deg} y_{i}=2 i$. And, there is a map $C: \sum^{-2} \mathbb{C} P^{\infty} \longrightarrow M U$.

Proposition $2.1 H_{*}(M U ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\left[b_{1}, b_{2}, \cdots\right]$, where $\operatorname{deg} b_{i}=2 i$.

According to Switzer's book[SwitzerBook1], we have the following Switzer formula.

Proposition 2.2 Let $\psi_{\mathbb{C} P^{\infty}}$ be the left A_{*}-coaction of $H_{*}\left(\mathbb{C} P^{\infty} ; \mathbb{Z} / 2\right)$. Then we have $\psi_{\mathbb{C} P^{\infty}}\left(y_{n}\right)=$ $\sum_{i=0}^{n}\left[(\xi)_{n-i}^{i}\right]^{2} \otimes y_{i}$, where $\xi=1+\xi_{1}+\xi_{2}+\cdots$.

Proposition 2.3 Let $\psi_{M U}$ be the left A_{*}-coaction of $H_{*}(M U ; \mathbb{Z} / 2)$. Then we have $\psi_{M U}\left(b_{n}\right)=$ $\sum_{i=1}^{n+1}\left[(\xi)_{n+1-i}^{i}\right]^{2} \otimes b_{i-1}$, where $\xi=1+\xi_{1}+\xi_{2}+\cdots$.

Proof. By the computation of $H_{*}(M U ; \mathbb{Z} / 2)$, we get $C_{*}\left(y_{n+1}\right)=b_{n}$ for all n. We have the following commutative diagram

Therefore,

$$
\begin{aligned}
\psi_{M U}\left(b_{n}\right) & =\psi_{M U}\left(C_{*}\left(y_{n+1}\right)\right) \\
& =\left(1 \otimes C_{*}\right) \circ \psi_{\mathbb{C P}}\left(y_{n+1}\right) \\
& =\left(1 \otimes C_{*}\right)\left(\sum_{i=0}^{n+1}\left[(\xi)_{n+1-i}^{i}\right]^{2} \otimes y_{i}\right) \\
& =\sum_{i=1}^{n+1}\left[(\xi)_{n+1-i}^{i}\right]^{2} \otimes b_{i-1} .
\end{aligned}
$$

3 Brown-Peterson Algebraic Splitting

Let $P=\mathbb{Z} / 2\left[\bar{b}_{i} \mid i \neq 2^{l}-1\right]$. We define $f: H_{*}(M U ; \mathbb{Z} / 2) \longrightarrow P$ by

$$
f\left(b_{n}\right)=\left\{\begin{array}{cl}
\bar{b}_{n} & , \text { if } n \neq 2^{l}-1 \text { for all } l \\
0 & , \text { if } n=2^{l}-1 \text { for some } l
\end{array}\right.
$$

and \bar{f} is defined as the following composite map

$$
H_{*}(M U ; \mathbb{Z} / 2) \xrightarrow{\psi_{M U}} A_{*} \otimes H_{*}(M U ; \mathbb{Z} / 2) \xrightarrow{1 \otimes f} A_{*} \otimes P,
$$

i.e., $\bar{f}=(1 \otimes f) \circ \psi_{M U}$. By the multiplication of $H_{*}(M U ; \mathbb{Z} / 2)$, we can define the multiplication of P, denoted by m_{P}, as the following diagram

We know that \bar{f} is an algebra map by checking the commutativity of the following diagram

where H means $H_{*}(M U ; \mathbb{Z} / 2)$. And, in the following diagram

(A) commutes since $H_{*}(M U ; \mathbb{Z} / 2)$ is a A_{*}-comodule and (B) commutes clearly. So, \bar{f} is a A_{*}-algebra map.

Lemma 3.1 P is a A_{*}-algebra with a trivial coaction, that is, $\psi_{P}\left(b_{n}\right)=1 \otimes b_{n}$ for all n. In addition, P is an E-algebra and the E-coaction of P, named by ψ_{P}^{E}, is a trivial coaction.

Proof. Consider P as a subalgebra of $A_{*} \otimes P$. By the above diagram, it is clear that P is a A_{*}-algebra. Since P has an extended A_{*}-comodule structure, it makes ψ_{P} a trivial coaction. Clearly, P is an E-algebra with trivial coaction.

Now, we are on the position to prove the Brown-Peterson algebraic splitting. Firstly, we prove a technical lemma.

Lemma 3.2 Let M^{k} be the subalgebra of M generated by $1, \xi_{1}, \xi_{2}, \cdots, \xi_{k}$ and P^{k} be the subalgebra of P generated by $1, \bar{b}_{1}, \bar{b}_{2}, \cdots, \bar{b}_{k}$. Then we have

1. If $k=2^{l}-1$ for some l, then $\bar{f}\left(b_{k}\right)=\xi_{l}^{2} \otimes 1+X_{1}$, where $X_{1} \in M^{k-1} \otimes P^{2^{k}-2}$.
2. If $2^{l-1}-1<k<2^{l}-1$ for some l, then $\bar{f}\left(b_{k}\right)=1 \otimes \bar{b}_{k}+X_{2}$, where $X_{2} \in M^{k-1} \otimes P^{k-1}$.

Proof. It is true by expending Swizter formula. See [SwitzerBook1] lemma 20.6 in page 493.

Proposition 3.3 (Brown-Peterson) $H_{*}(M U ; \mathbb{Z} / 2) \cong M \otimes_{\mathbb{Z} / 2} P$ as A_{*}-algebra where $M=$ $\mathbb{Z} / 2\left[\xi_{1}^{2}, \xi_{2}^{2}, \cdots\right]$ is an A_{*}-subalgebra of A_{*} and $P=\mathbb{Z} / 2\left[\bar{b}_{i} \mid i \neq 2^{l}-1\right]$.

Proof. Let \bar{f} be defined as above. By the Switzer formula, we observe that $\operatorname{Im} \bar{f} \subseteq M \otimes P$. Therefore, $\bar{f}: H_{*}(M U ; \mathbb{Z} / 2) \longrightarrow M \otimes P$ is an A_{*}-algebra map.

As $\mathbb{Z} / 2$-vector spaces, we have that $\operatorname{dim} H_{*}(M U ; \mathbb{Z} / 2)=\operatorname{dim} M \otimes P$, since both dimensions are finite and we have the following 1-1 correspondences

$$
\left\{\begin{array}{cl}
b_{n} & \longleftrightarrow 1 \otimes \bar{b}_{n} \quad, \text { for } n \neq 2^{l}-1 \text { for some } l \\
b_{2^{l}-1} & \longleftrightarrow \xi_{l}^{2} \otimes 1
\end{array}\right.
$$

in basis elements for counting dimensions. In proving $H_{*}(M U ; \mathbb{Z} / 2) \cong M \otimes_{\mathbb{Z} / 2} P$ as $\mathbb{Z} / 2$-vector spaces, it suffices to show that \bar{f} is onto, i.e., $M \otimes P \subseteq \operatorname{Im} \bar{f}$. Of course, $M^{0} \otimes P^{0} \subseteq \operatorname{Im} \bar{f}$. For all t, s, we will prove $M^{t} \otimes P^{s} \subseteq \operatorname{Im} \bar{f}$ by induction on both indexes(See [SwitzerBook1] theorem 20.7 in page 493). Without loss of generality, we assume that $M^{i-1} \otimes P^{2^{i}-2} \subseteq \operatorname{Im} \bar{f}$ for some $i>1$. We want to prove $M^{i} \otimes P^{d} \subseteq \operatorname{Im} \bar{f}$ for $2^{i}-2 \leq d \leq 2^{i+1}-2$ to complete our induction
step. By lemma $3.2(1)$, we know that $M^{i} \otimes P^{0} \subseteq \operatorname{Im} \bar{f}$. Assume that $M^{i} \otimes P^{j-1} \subseteq \operatorname{Im} \bar{f}$ for some $1<j<2^{i+1}-1$. If $j=2^{d}-1$ for some $d>1$ such that $1 \leq d \leq i$, then $P^{j}=P^{j-1}$ by its definition, that is, $M^{i} \otimes P^{j} \subseteq \operatorname{Im} \bar{f}$. Otherwise, $M^{0} \otimes P^{j} \subseteq \operatorname{Im} \bar{f}$ by lemma 3.2(2). Since \bar{f} is an A_{*}-algebra map, we conclude that $M^{i} \otimes P^{j} \subseteq \operatorname{Im} \bar{f}$ by using multiplication. This completes the induction step.

Combining two results in above, we conclude that $H_{*}(M U ; \mathbb{Z} / 2) \cong M \otimes_{\mathbb{Z} / 2} P$ as A_{*}-algebra.

4 Brown-Peterson Spectrum

Brown and Peterson first constructed a spectrum, $B P$, such that $H_{*}(B P)=\mathbb{Z} / 2\left[\xi_{1}^{2}, \xi_{2}^{2}, \cdots\right]$. And Quillen used the multiplicative map and idempotent to construct a map g in the following

$$
B P \longrightarrow M U_{(2)} \xrightarrow{g} M U_{(2)} .
$$

5 To Compute the stable homptopy group of $M U$

We use the Adams spectral sequence to compute the $\pi_{*}(M U)$, the stable homotopy group of $M U$.

Proposition 5.1 Let Q be a left A_{*}-comodule which is concentrated in even dimensions. Then Q is a comodule over M where $M=\mathbb{Z} / 2\left[\xi_{1}^{2}, \xi_{2}^{2}, \cdots\right]$.

Proof. Let ψ be the left coaction of Q. For all $q \in Q$, we assume $\psi(q)=\sum_{k} a_{k} \otimes q_{k}$, where $a_{k} \in A_{*}$ and $q_{k} \in Q$. Since $\operatorname{deg} q$ and $\operatorname{deg} q_{k}$ are all even, $\operatorname{deg} a_{k}$ must be even, i.e., a_{k} is represented by a multiplication of even number element in A_{*}. Assume that there exists an $a_{i} \in A_{*} \backslash M$, i.e., $a_{i}=a^{\prime} \xi_{i}^{k}$, where a^{\prime} does not consist by ξ_{i} and k is odd. Consider the coassociativity of ψ,

We have $(\Delta \otimes 1)\left(a_{i} \otimes q_{i}\right)=\Delta\left(a_{i}\right) \otimes q_{i}=\left(\sum_{s} m_{s} \otimes a_{s}\right) \otimes q_{i}$, where $m_{s} \in M$ and $a_{s} \in A_{*}$. By another way, we get $(1 \otimes \psi)\left(a_{i} \otimes q_{i}\right)=a_{i} \otimes \psi\left(q_{i}\right)=a_{i} \otimes\left(\sum_{t} a_{t} \otimes q_{t}\right)$, where $a_{t} \in A_{*}$ and $q_{t} \in Q$. But $a_{i} \notin M$, so we conclude that $(\Delta \otimes 1)\left(a_{i} \otimes q_{i}\right) \neq(1 \otimes \psi)\left(a_{i} \otimes q_{i}\right)$. Therefore, $a_{i} \in M$ for all i, i.e., $\psi(q) \in M \otimes Q . Q$ is a comodule over M.

The E_{2}-term of the Adams spectral sequence to compute $\pi_{*}(M U)$ is

$$
\operatorname{Ext}_{A_{*}^{* *}}^{* *}\left(\mathbb{Z} / 2, H_{*}(M U ; \mathbb{Z} / 2)\right)
$$

Before we determine it, we introduce a special case of the change-of-rings isomorphism theorem first. The cotensor product of A_{*} and P over E, denoted by $A_{*} \square_{E} P$, is the kernel of the following map

$$
A_{*} \otimes_{\mathbb{Z} / 2} P \longrightarrow \xrightarrow{\Delta \otimes 1-1 \otimes \psi_{P}^{E}} \longrightarrow A_{*} \otimes_{\mathbb{Z} / 2} E \otimes_{\mathbb{Z} / 2} P
$$

Proposition 5.2 Let A_{*} be the dual Steenrod algebra and E be its exterior algebra. By the proposition proved in Section ??, we know that $H_{*}(M U ; \mathbb{Z} / 2) \cong M \otimes_{\mathbb{Z} / 2} P$ as A_{*}-algebra where M and P are defined as above. And we have

$$
\operatorname{Ext}_{A_{*}^{*}}^{* *}\left(\mathbb{Z} / 2, A_{*} \square_{E} P\right) \cong \operatorname{Ext}_{A_{*}}^{* *}(\mathbb{Z} / 2, P)
$$

Proof. The proof of this theorem is just diagram chasing. See [SwitzerBook1] theorem 20.16 in page 498.

Corollary 5.3 We have

$$
\operatorname{Ext}_{A_{*}^{*}}^{*, *}\left(\mathbb{Z} / 2, A_{*} \otimes_{\mathbb{Z} / 2} P\right) \cong \operatorname{Ext}_{E}^{*, *}(\mathbb{Z} / 2, P) \cong \operatorname{Ext}_{E}^{*, *}(\mathbb{Z} / 2, \mathbb{Z} / 2) \otimes_{\mathbb{Z} / 2} P
$$

Proof. By the usual projection from A_{*} to E, we know that $\Delta\left(\xi_{n}\right)=\sum_{0 \leq i \leq n} \xi_{n-i}^{2^{i}} \otimes \xi_{i}$ for all n is the right E-comodule formula of the A_{*}. Obviously, we have $M \otimes_{\mathbb{Z} / 2} P \subseteq \operatorname{ker}\left(\Delta \otimes 1-1 \otimes \psi_{P}^{E}\right)$. Let $\xi=\xi_{i_{1}}^{n_{1}} \xi_{i_{2}}^{n_{2}} \cdots \xi_{i_{k}}^{n_{k}} \in A_{*}$. We have $\Delta(\xi)=\prod_{t=1}^{k}\left(\Delta\left(\xi_{i_{t}}\right)\right)^{n_{t}}$. Let $p \in P$. According to Lemma
3.1, we have

$$
\begin{aligned}
& \left(\Delta \otimes 1-1 \otimes \psi_{P}^{E}\right)(\xi \otimes p) \\
= & \prod_{t=1}^{k}\left(\Delta\left(\xi_{i_{t}}\right)\right)^{n_{t}} \otimes p-\xi \otimes 1 \otimes p \\
= & \prod_{t=1}^{k}\left(\sum_{0 \leq j \leq i_{t}} \xi_{i_{t}-j}^{2^{j}} \otimes \xi_{j}\right)^{n_{t}} \otimes p-\xi \otimes 1 \otimes p \\
= & \prod_{t=1}^{k}\left(\sum_{1 \leq j \leq i_{t}} \xi_{i_{t}-j}^{2^{j}} \otimes \xi_{j}\right)^{n_{t}} \otimes p \\
& +\sum_{s=1}^{k}\left(\xi_{i_{s}} \otimes 1\right)^{n_{s}}\left(\prod_{\substack{t=1 \\
t \neq s}}^{k}\left(\sum_{1 \leq j \leq i_{t}} \xi_{i_{t}-j}^{2^{j}} \otimes \xi_{j}\right)^{n_{t}}\right) \otimes p
\end{aligned}
$$

If $\xi \otimes p \in \operatorname{ker}\left(\Delta \otimes 1-1 \otimes \psi_{P}^{E}\right)$, then we claim that n_{i} is even for all i, that is $\operatorname{ker}\left(\Delta \otimes 1-1 \otimes \psi_{P}^{E}\right) \subseteq$ $M \otimes_{\mathbb{Z} / 2} P$. If not, there exists an i such that n_{i} is the largest odd number of all powers in ξ. Observing the above formulation, the term $\alpha \otimes \xi_{n_{i}} \otimes p$ can not be eliminated since it only occur once. So, ξ must belong to M. This proves that $A_{*} \square_{E} P=M \otimes_{\mathbb{Z} / 2} P$, that is,

$$
\operatorname{Ext}_{A_{*}^{* *}}^{*,}\left(\mathbb{Z} / 2, A_{*} \otimes_{\mathbb{Z} / 2} P\right)=\operatorname{Ext}_{A_{*}^{*, *}}^{*}\left(\mathbb{Z} / 2, A_{*} \square_{E} P\right) \cong \operatorname{Ext}_{E}^{*, *}(\mathbb{Z} / 2, P)
$$

Since P is coaction trivial, we can easily conclude that

$$
\operatorname{Ext}_{E}^{*, *}(\mathbb{Z} / 2, P) \cong \operatorname{Ext}_{E}^{*, *}(\mathbb{Z} / 2, \mathbb{Z} / 2) \otimes_{\mathbb{Z} / 2} P
$$

by computing the cobar complex of P over E directly.
Recall a well-known result.

Proposition 5.4 Ext $t_{E}^{*, *}(\mathbb{Z} / 2, \mathbb{Z} / 2)=\mathbb{Z} / 2\left[\bar{\xi}_{1}, \bar{\xi}_{2}, \cdots\right]$, where bideg $\bar{\xi}_{i}=\left(1,2^{i}-1\right)$.

Proof. Consider the cobar complex of $\mathbb{Z} / 2$ over E,

$$
\mathbb{Z} / 2 \longrightarrow \bar{E} \longrightarrow \bar{E} \otimes \bar{E} \longrightarrow \cdots
$$

where \bar{E} is the argument algebra of E. The multiplication of this complex is the usual tensor product of graded module. So $E x t_{E}^{*, *}(\mathbb{Z} / 2, \mathbb{Z} / 2)$ must be a ring. Let $\Delta_{E}: E \longrightarrow E \otimes E$ be the
coalgebra map. By Proposition 1.1, we get $\Delta_{E}\left(\xi_{i}\right)=1 \otimes \xi_{i}+\xi_{i} \otimes 1$ for all i. Consider the i-th line, that is,

$$
\stackrel{i-1}{\otimes} \bar{E} \longrightarrow \xrightarrow{\Delta_{E}^{i-1}} \longrightarrow \stackrel{i}{\otimes} \bar{E} \longrightarrow \xrightarrow{\Delta_{E}^{i}} \longrightarrow \stackrel{i+1}{\otimes} \bar{E} .
$$

We claim that the cycle of the i-th line is $\stackrel{i}{\otimes} \xi_{n_{i}}$. It is clear that $\Delta_{E}^{i}\left(\stackrel{i}{\otimes} \xi_{n_{i}}\right)=0$. Let $\xi \in \stackrel{i}{\otimes} \bar{E}$. If ξ is not of the form $\stackrel{i}{\otimes} \xi_{n_{i}}$, then we assume that $\xi=\stackrel{i}{\otimes} \alpha_{i}$, where $\alpha_{i} \in \bar{E}$ with a j such that $\alpha_{j}=\xi_{n_{1}} \xi_{n_{2}} \cdots \xi_{n_{k}}$, where $k>1$. We have $\Delta_{E}^{i}\left(\alpha_{j}\right)=\prod_{t=1}^{k}\left(1 \otimes \xi_{n_{t}}+\xi_{n_{t}} \otimes 1\right)-1 \otimes \alpha_{j}-\alpha_{j} \otimes 1$. Therefore, $\Delta_{E}^{i}(\xi) \neq 0$. We conclude that the cycle of the i-th line is $\stackrel{i}{\otimes} \xi_{n_{i}}$. To be continued.

Since only $M U_{(2)}$ has a converging Adams spectral sequence, we replace $M U$ by $M U_{(2)}$. By the properties of $M U_{(2)}$, we know that the calculations in above are the same. Therefore, we can get the same answers, that is, the E_{2}-term of $M U_{(2)}$ is $\mathbb{Z} / 2\left[\bar{\xi}_{1}, \bar{\xi}_{2}, \cdots\right] \otimes_{\mathbb{Z} / 2} P$. Consider the differentials of the Adams spectral sequence which converges to $\pi_{*}\left(M U_{(2)}\right)$,

$$
d^{r}: E_{r}^{s, t} \longrightarrow E_{r}^{s+r, t+r+1} .
$$

Observing our E_{2}-term, since bideg $\bar{\xi}_{i}=\left(1,2^{i}-1\right)$ and bideg $b_{j}=(0,2 j)$ where $j \neq 2^{l}-1$ for all l, we have $E_{2}^{s, t}=0$ if $t-s$ is odd. It follows that all differentials vanish, that $d^{r}=0$, because they shift degree $t-s$ by 1 . Therefore, our Adams spectral sequence collapse, that is, $E_{\infty}^{* * *} \cong E_{2}^{*, *}$.

The last thing we need to do is to solve the group extension problem. Before we do this, we give a useful lemma first.

Lemma 5.5 Let X be a space or a spectrum. The Adams spectral sequence with E_{2}-term equals to $\operatorname{Ext}_{A_{*}}^{* *}\left(\mathbb{Z} / 2, H_{*}(X ; \mathbb{Z} / 2)\right)$ converges to $\pi_{*}\left(X_{(2)}\right)$. Let $x \in \pi_{*}\left(X_{(2)}\right)$ which is detected by $a \in E_{\infty}^{s, t}$. Then $2 x$ is detected by $\xi_{1} \otimes a \in E_{\infty}^{s+1, t+1}$.

Here is the answer of this section.

Proposition $5.6 \pi_{*}\left(M U_{(2)}\right) \cong \mathbb{Z}\left[m_{1}, m_{2}, \cdots\right]$ where $\operatorname{deg} m_{i}=2 i$.

Proof. We have the Adams spectral sequence E_{∞}-term, $\operatorname{Ext}_{E}^{*, *}(\mathbb{Z} / 2, \mathbb{Z} / 2) \otimes_{\mathbb{Z} / 2} P$ converging to $\pi_{*}\left(M U_{(2)}\right)$. If $d \neq 2^{l}-1$ for all l, then let m_{d} be the element in $\pi_{2 d}\left(M U_{(2)}\right)$, that
is $m_{d}: S^{2 d} \longrightarrow M U_{(2)}$, detected by b_{d} in $E_{\infty}^{0,2 d}$. If $d=2^{l}-1$ for some l, let m_{d} be the element in $\pi_{2\left(2^{l}-1\right)}\left(M U_{(2)}\right)$, that is $m_{d}: S^{2\left(2^{l}-1\right)} \longrightarrow M U_{(2)}$, detected by $\bar{\xi}_{d}$ in $E_{\infty}^{1,2^{d}-1}$. Since $\left\{b_{d} \mid d \neq 2^{l}-1\right.$ for all $\left.l\right\} \cup\left\{\bar{\xi}_{d} \mid d=2^{l}-1\right.$ for some $\left.l\right\}$ generate our E_{∞}-term, $\left\{m_{d}\right\}$ is the set of generators of $\pi_{*}\left(M U_{(2)}\right)$. Firstly, we claim that $m_{i} m_{j} \neq 0$ for all i, j. Since $m_{i} m_{j}$ is detected by an element α in $E_{\infty}^{0, *}, E_{\infty}^{1, *}$ or $E_{\infty}^{2, *}$ which all have no relations, it follows $m_{i} m_{j} \neq 0$. Otherwise, α is zero in the filtration quotient will become a relation. Secondly, by lemma 5.5 , we know that m_{i} is torsion free for all i since our E_{∞}-term has no relation looks like $\xi_{1} \otimes_{-}$. Thirdly, let $\sum_{i=1}^{k} n_{i} \alpha_{i}$ be in $\pi_{*}\left(M U_{(2)}\right)$. Assume $\sum_{i=1}^{k} n_{i} \alpha_{i}$ is in the j-th filtration, that is $\sum_{i=1}^{k} n_{i} \alpha_{i} \in F^{j}\left(\pi_{*}\left(M U_{(2)}\right)\right)$. Consider the natural projection

$$
P: F^{j} \longrightarrow \frac{F^{j}}{F^{j+1}} \cong E_{\infty}^{j, *}
$$

If $P\left(\sum_{i=1}^{k} n_{i} \alpha_{i}\right)=0$, then $P\left(\sum_{i=1}^{k} n_{i} \alpha_{i}\right)$ become a relation in $E_{\infty}^{*, *}$. It is a contradiction. It follows that $\sum_{i=1}^{k} n_{i} \alpha_{i} \neq 0$, that is $\pi_{*}\left(M U_{(2)}\right)$ has no relation. Therefore, we conclude that $\pi_{*}\left(M U_{(2)}\right) \cong \mathbb{Z}\left[m_{1}, m_{2}, \cdots\right]$ where $\operatorname{deg} m_{i}=2 i$.

6 Brown-Peterson Topological Splitting

Finally, we are on a good position to give a stable splitting of $M U_{(2)}$ which admits $B P$ as a stable summand.

Proposition 6.1 (Brown-Peterson) $M U_{(2)} \simeq \bigvee \sum^{n} B P$.

Proof. As section 4, we have a stable map

$$
f: B P \longrightarrow M U_{(2)}
$$

which induces the inclusion map in $\mathbb{Z} / 2$-homology, that is,

$$
f_{*}: H_{*}(B P) \longrightarrow H_{*}\left(M U_{(2)}\right)
$$

is the natural inclusion map. If $i \neq 2^{l}-1$ for all l, let g_{i} be the map represents the generator m_{i} of $\pi_{2 i}\left(M U_{(2)}\right)$ which is detected by $b_{i} \in E_{\infty}^{0,2 i}$, i.e.,

$$
g_{i}: S^{2 i} \longrightarrow M U_{(2)}
$$

and m_{i} is in the 0 -th filtration. In the Adams tower,

the bottom horizontal map, named by T, is the stable Hurewicz map from $\pi_{*}\left(M U_{(2)}\right)$ to $H_{*}\left(M U_{(2)}\right)$. Since m_{i} is in the 0-th filtration and not in the 1-st filtration, we have $T\left(g_{i}\right) \neq 0$. Therefore, $T\left(g_{i}\right)$ must be the generator of $H_{2 i}\left(M U_{(2)}\right)$, i.e., b_{i}. Define

$$
F: B P \wedge\left(\vee S^{2 i}\right) \xrightarrow{f \wedge\left(\wedge g_{i}\right)} \xrightarrow{ } M U_{(2)} \wedge\left(\vee M U_{(2)}\right) \longrightarrow \xrightarrow{h \circ \bar{h}} \longrightarrow M U_{(2)},
$$

where h is the ring map of ring spectrum $M U_{(2)}$ and \bar{h} is the folding map. It follows that F_{*} is an isomorphism between $H_{*}\left(B P \wedge\left(\wedge S^{2 i}\right)\right)$ and $H_{*}\left(M U_{(2)}\right)$. By Hurewicz theorem and Whitehead theorem, we know that $B P \wedge\left(\wedge S^{2 i}\right) \simeq M U_{(2)}$ stably, that is, $M U_{(2)} \simeq \bigvee \sum^{n} B P$.

References

[Brown-Peterson1966] E.H. Brown, Jr. and F.P. Peterson, A Spectrum whose \mathbb{Z}_{p} Cohomology Is the Algebra of Reduced $p^{\text {th }}$ Powers, Topology, 5(1966), 149-154.
[Milnor1958] J.W. Milnor, The Steenrod Algebra and Its Dual, Ann. of Math., 67(1958), 150-171.
[SwitzerBook1] R.M. Switzer, Algebraic Topology, homotopy and homology, SpringerVerlag, Berlin and New York, 1975.

