
 1 

Heap Algorithms 
 

• Assume that the heap is to be stored in an array with size elements. (A[0..size-1]) 
 

• Heapify is called passing it the root of some subtree (index i in the algorithm).   
 

• The algorithm assumes that the left and right subtrees of node A[i] are both 
heaps.  However A[i] may have a value smaller that one or both children.  
Heapify fixes the problem so that the subtree rooted at A[i] is a heap: 

 
•  Heapify does not make a heap out of a tree but makes a heap out of the subtree 

rooted at node i. 
 
 

heapify (A[], int size,  i)      // A is an array; i is the index of a node 
{ 
 left = 2i+1;         //left child of A[i] 
 right = 2i+2;            //right child of A[i] 
 
 if ( left < size  && A[left] > A[i]) 
  largest = left; 
 else 
  largest = i; 
  
 

if ( right < size && A[right] > A[largest] 
  largest = right; 
 
 if (largest != i) 
 { 
  swap (A[i], A[largest]); 
  heapafy(A, size, largest); 
 } 
} 

 
 
 
 
 
Building a Heap 
 
// this builds a heap by calling heapify on each node  
// start with the deepest node with children 
 

buildHeap(A[], int size)  // A[0..size – 1] 
{ 
    for (int i = (size –2)/2 down 0)  // from the first node with children to root 
  heapafy(A, size, i); 
} 
 



 2 

Priority Queue Algorithms Using a Heap Implementation 
 

 
insert( A, size, max, key)   // key  holds the priority,  

//size is  current number of data in the heap 
            // max is the   maximum number of data 

    // that CAN be stored in A 
{ 
 
      if ( size == max) 
             error (“overflow”) 
 
 
      i = size;                         
       
      
      while (i > 0 && A[ (i-1)/2] < key)  // (i-1)/ 2 is the parent of i 
      { 
                A[i] = A[(i-1)/2]           // move value in the parent of A[i} down to A[i] 
                 i= parent (i) 
       } 
 
       A[i] = key;  // add new element to tree 
       size++; 
} 
 

 
 

 
remove(A , size)  // returns element with the highest priority 
{ 
 if (size < 1) 
  error (“heap underflow”) 
 
 max = A[0]             // top element 
 
 A[0] = A[size – 1]  // move last element to top 
 size--;      

 
 heapafy(A, size, 0)  // adjust the heap 

 return max 
} 

      
 



 3 

 



 4 

 



 5 

 



 6 

 



 7 

 
 

Heapsort 
 

void heapsort(A[], int size) 
{ 
        buildHeap(A, size); // build an initial heap from the sata 
 
            int index = size-1; 
 while(index >= 1) // for each node beginning with  the last leaf 
 {        
  //switch the root with the last leaf 

int temp = A[0]; 
  A[0] = A[index]; 
  A[index] = temp; 
  index--; 
 
  //adjust the heap excluding the leaves with the largest values 

size--; 
  heapify(A,size,0); 
 } 
} 



 8 

 

HeapSort 
 
 

Problem :  
Sort the list (array) 

16,14,10,8,7,9,3,2,4,1 
 
 

 



 9 

 
 

 

 



 10 

 
 
 

 
 
 



 11 

 
 
 

 



 12 

 
 
 

 



 13 

 
 
 
 

 



 14 

 
 
 
 

 



 15 

 
 
 

 



 16 

 
 
 

 



 17 

 
 
 

 
 


